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RESUMO

Deficiéncia fisica motora é um problema que afeta milhares de pessoa no Brasil e
no mundo e a tendéncia é s6 aumentar conforme a expectativa de vida aumenta. Uma
das possiveis solucoes para um portador de deficiéncia é reabilitacao, com o objetivo de
recuperar a movimentagao do membro. Com isso em mente exoesqueletos podem ser
utilizados para oferecer uma melhor experiéncia de reabilitacao, auxiliando o paciente
nas atividades e diminuindo os esforcos do fisioterapeuta. Para o melhor uso de um
exoesqueleto deve-se ter uma sensagao de controle sobre o mesmo, tanto em questao
do movimento realizado quanto do tempo de realizacao do movimento. Desse modo, o
principio deste trabalho ¢ utilizar dados de eletroencefalografia (EEG) e eletromiografia
(EMG) a partir de um experimento do movimento de alcance da mao, disponiveis em um
banco de dado publico, para encontrar a relacao temporal entre a intengao de movimento
e o movimento em si. Duas técnicas de deteccao de movimento sao utilizadas, uma
para cada sinal: o Event-Related Desynchronization (ERD) a partir do sinal de EEG,
para detectar a intencao do movimento; e a deteccao do ONSET e OFFSET no sinal de
EMG, representando o inicio e final do movimento, respectivamente. Para complementar
o trabalho, é realizado uma anélise de coeréncia entre os sinais. Deste trabalho conclui-se
que os métodos de detecgao de movimento dos dois sinais sao suficientes para encontrar o
tempo entre a inten¢ao e o préoprio movimento, mesmo apesar da complexidade do sinal de
EEG. Sao também definidas as bandas de frequéncia onde os sinais aprensentam melhor
coeréncia.

Palavras-Chave — EEG, EMG, Coeréncia, ERD, Onset/Offset, Engenharia.



ABSTRACT

Physical disability is a problem that affects thousands of people in Brazil and worldwide
and the trend is only to increase as life expectancy increases. One of the possible solutions
for a person with a physhical disability is rehabilitation, with the aim of regaining the limb
movement. With this in mind, exoskeletons can be used to offer a better rehabilitation
experience, helping the patient with activities and reducing the physiotherapist’s efforts.
For the best use of an exoskeleton, one must have a sense of control over it, both in terms
of the movement performed and the time the movement is performed. Thus, the principle
of this work is to use electroencephalography (EEG) and electromyography (EMG) data
from a hand-reaching movement experiment, available in a public database, to find the
temporal relationship between the intention of movement and the moviment itself. Two
motion detection techniques are used, one for each signal: Event-Related Desynchroniza-
tion (ERD) from the EEG signal, to detect motion intention; and the detection of ONSET
and OFFSET in the EMG signal, representing the beginning and end of the movement,
respectively. To complement the work, an analysis of coherence between the signals is
carried out. From this work, it is concluded that the motion detection methods of the
two signals are sufficient to find the time between the intention and the movement itself,
despite the complexity of the EEG signal. The frequency bands where the signals have
better coherence are also defined.

Keywords — EEG, EMG, Coherence,ERD, Onset/Offset, Engineering.
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1 INTRODUCAO

1.1 Motivacao

Pode-se definir deficiéncia como toda condi¢ao que traga impedimentos fisicos, men-
tais, sensoriais ou intelectuais ao ser humano ao tentar realizar alguma atividade ou
interagir com seu ambiente (Lei Federal n® 13.146/2015, artigo n®2). Assim, todos estao
sujeitos a adquirir uma deficiéncia ao longo da vida. De acordo com a Cartilha do Censo

de 2010 [7], cerca de 23,9% da populacao brasileira tém algum tipo de deficiéncia.

Inserido nesse dado, temos que a segunda maior deficiéncia presente entre os brasileiros
é a deficiéncia motora ou fisica (7%) [7], cuja definicao ¢ dada pela limitagao de qualquer
funcao motora do corpo. Esse tipo de deficiéncia pode ser relacionado tanto a doencas
genéticas (como a sindrome de Down) e neuroldgicas (como a doenga de Parkinson ou o

AVC), quanto a lesoes (medulares ou cranianos) [8].

Além da existente populacao com deficiéncia fisica, deve-se atentar também a po-
pulacao que tende a adquirir tal deficiéncia. Com o avanco da medicina, acompanha-se
o aumento da expectativa de vida. Consequentemente, pode-se enxergar um aumento da
populagao idosa: de acordo com a Organizagao Mundial da Satide, a populagao com mais
de 60 anos de idade chegara a 2 bilhdes até 2050 [9]. Devido a maior idade, a pessoa
possui menos capacidade fisica e mental, e maior risco de doengas [9], causando maior

chance de adquirir uma deficiéncia fisica.

O cenario de deficiéncia fisica pode ser visto entao, como um vasto e crescente pro-
blema. Além da dificuldade dos portadores superarem barreiras socieconomicas e fisicas
da sociedade, ainda necessitam lidar com a dependéncia de outros, afetando ambos os
lados [10]. Recorre-se, entdo, a engenharia para poder solucionar esse problema. Dentro
das existentes dreas de trabalho para a solugdo desse problema (promogao, prevengao,
tratamento e reabilitacao) [8] pode-se utilizar da tecnologia da engenharia mecatronica
para auxiliar na melhoria dos processos de assisténcia dos movimentos dos portadores de

deficiéncia motora e a seu processo de reabilitacao.
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1.1.1 Reabilitacao

A reabilitacao tem grande importancia para os portadores de deficiencia fiscia. Tem
como objetivo a recuperacao gradual dos movimentos perdidos a partir da fisioterapia e
terapia ocupacional. Mesmos nos casos em que a deficiéncia apresenta danos permanentes
no paciente, a reabilitagao possibilita o portador a aprender a conviver com a incapacidade
motora, encontrando diferentes maneiras de se reajustar ao ambiente. Dentro dessas tera-
pias, o portador conta com exercicios fisicos e sociais para reaprender as tarefas motoras

perdidas, ganhando assim sua independéncia de volta.

O que realmente ocorre nessas terapias tem correlacao com a neuroplasticidade e
reorganizacao cortical. A neuroplasticidade é uma propriedade neuroquimica de variagao
da conexao dos neurdnios. Assim como um elemento plastico, essa conexao pode se
fortalecer ou enfraquecer com o tempo. A neuroplasticidade tem grande responsabilidade
da aprendizagem motora e promove a reorganizacao cortical no cortex do cérebro. Esse
principio permite criar novos caminhos neurais aos danificados, podendo assim reaprender
fungoes motoras. Ambos sao resultados do exercicio ativos, ativo-assistidos e passivos que

ocorrem nas terapias. [§]

Todavia, no Brasil, o processo de fisioterapia é mais delicado. Pode-se entao aplicar os
conhecimentos de engenharia em tecnologias para assistir os profissionais fisioterapéuticos
[11].

Equipamentos assistivos vém ganhando espaco nas clinicas de reabilitacao motora.
Além de minimizar o trabalho dos terapeutas, devido a automacao de tarefas pesadas e
repetitivas, os equipamentos trazem mais consisténcia nas atividades. Assim, os resultados

sdo mais controlados e quantificados [8].

1.1.2 Exoesqueleto

Entre os equipamentos tecnoldgicos assistivos para reabilitagao, podemos destacar o
exoesqueleto. Trata-se de uma tecnologia que mimetiza o exoesqueleto retratado na na-
tureza, como em insetos. O LOKOMAT [12] é um exemplo de exoesqueleto. A origem de
seu trabalho parte dos treinos em esteiras de locomocao, adotados em varios centros de
reabilitacao. Geralmente nesses trabalhos, fisioterapeutas assistem o movimento das per-
nas do paciente, parcialmente colocados na esteira por meio de um sistema de suspensao.
A aplicacao de um método autonomo por meio do LOKOMAT melhora a qualidade dos

resultados e permite uma maior duracao, uma vez que nao depende dos esforcos dos pro-
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fissionais. Ao identificar esforcos de movimentos, o LOKOMAT auxilia adicionando uma

forca e um movimento da esteira, para a realizacao da marcha.

Entretanto, o trabalho a ser realizado tera o foco nos membros superiores, visto que ja
existe 6timos trabalhos para os membros inferiores. Deficiéncia dos membros superiores
nao se limitam apenas aos casos de imobilidade, mas também de doencas como o Parkinson
ou o AVC. Sao os membros superiores, em especifico os bragos e maos, os responsaveis de
tarefas mais diversas, como as de ambiente de trabalho. A reabilitacao desses membros
permite a reinsercao dos portadores de deficiéncia em ambientes de trabalhos, e com isso
menos barreiras para o paciente [13]. Os produtos Armeo sdo exemplos sofisticados de
exoesqueletos para membros superiores: possuem exoesqueletos ativos e passivos. A partir
de sinais EMG@G, o exoesqueleto auxilia no torque de flexao e extensao do brago. Por uma

malha de controle da posi¢ao, pode-se definir a forga e posigao do exoesqueleto [14].

1.1.3 Sistema integrado EEG e sEMG

Dentre os exoesqueletos mencionados anteriormente, todos trabalham com um mesmo
sistema de captagao de esfor¢o dos musculos. O sensor utilizado é um eletromiograma,
que permite captar a reacao do musculo ao ser contraido ou relaxado, devido ao potencial
elétrico gerada pelas fibras musculares. O eletromiograma mais comumente utilizado é o

superficial (sSEMG), pois é nao invasivo ao paciente. [15]

O sinal EMG (eletromiografia) extraido, no entanto, apresentam ruidos que podem
afetar a analise, diminuindo sua precisao. Filtros de controle sao entao utilizados nesses
casos. Todavia, a integracao dos sinais EMG j& usados com os sinais EEG (eletroencefalo-
grafia) é apontado por trazer resultados mais satisfatérios [6]. Os sinais EEG sao captados
do cérebro, onde eletrodos monitoram as atividades elétricas. Quando uma pessoa realiza
uma atividade, essa é comandada pelo cérebro. Como os eletrodos nao estao presentes
diretamente no musculo, os sinais EEG sao considerados mais fracos. Assim, podemos

relacionar os dois sinais EEG e EMG, resultando numa dupla compensacao dos dois.
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2 ESTADO DA ARTE

Com a finalidade de alcancar os conhecimentos atuais para a realizacao do projeto,
alguns artigos cientificos foram selecionados para o estado da arte. Além de artigos sobre
o uso dos sinais EMG e EEG em um exoesqueleto, também escolheu-se estudar artigos
de assuntos mais especificos, sobre os dados do dataset escolhido, métodos de analise de

sinal EMG, métodos de andlise de sinal EEG e a coeréncia entre as duas.

2.1 EMG e EEG em sistemas de exoesqueletos

Os trabalhos seguintes ja abordam a fusao das duas técnicas. No artigo [1] é utilizado
EEG e sEMG para identificar movimentos dos membros inferiores unilaterais, uma vez
que os métodos exploram as vantagens de cada um e aliviam as limitacoes uma da outra.
Durante o experimento, o sujeito deveria, partindo do relaxamento (movimentagao nula),

contrariar o pé (dorsiflexdo ou flexao plantar), como indicado na Figura 1.

Apos a filtragem e amplificagao dos sinais capturados, tanto pelo EMG quanto pelo
EEG, os métodos foram avaliados pelas suas performances de captura e os sinais EMG
foram melhores que os sinais EEG, devido a aquisigao direta da fonte (musculo). Porém
estd mais sujeito a disturbios e ruidos. Ao cascatear os dois sinais, obteve-se o melhor

resultado, anulando o problema de precisao do EEG e de ruido do EMG.
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Figura 1: Montagem do experimento do pé extraido de [1].

Foi apresentado em [2] um sistema de controle do cotovelo direito utilizando sinais de
EEG e EMG gravados com o auxilio de uma Raspberry Pi 3 B+ e o conversor analégico
digital ADS1299EEG-FE. O experimento consiste em utilizar o DAS1299 para captar
os sinais EEG e EMG por uso de eletrodos passivos nao invasivos e transmitir para o
Raspberry Pi. O Raspberry Pi comanda um motor DC brushless por intermédio de um
conversor de nivel l6gico para controlar uma értese de cotovelo. O sistema de montagem

pode ser visto da Figura 2, retirada do préprio artigo.

O primeiro passo foi utilizar o sistema para gravar o movimento do cotovelo da mao
direita repetidas vezes. Os dados obtidos foram movidos para um computador onde sao
feitos o pré-processamento para remover possiveis sinais de ruido. Os sinais de EEG e
EMG sao processados em um computador para obter uma relacao entre os sinais e os
movimentos que serao feitos. O segundo passo € extrair as frequéncias desejadas para
estudo, e isso é feito usando a transformada discreta de wavelet em em ambos os sinais,
EEG e EMG. Para o sinal de EEG é usado Delta-Alpha Ratio e o EMG ¢é usado o
Quadrado Médio da Raiz para poder classificar os sinais medidos. A acuracia das medigoes
finais foram de 90.3% para o treinamento e de 85.2% para os testes. Grande parte da
acuracia veio do sinal de EMG, enquanto o sinal de EEG apresentou uma acuréacia bem

reduzida.

Um projeto que utiliza os sinais de EEG e EMG de maneira diferente de todos os
trabalhos citados anteriormente é o apresentado em [16]. Esse trabalho propoe um modelo
matematico para a performance psicomotora dos dedos das maos de musicos. Foi proposto
um modelo hibrido de anélise chamado ” the-upper-alpha-power- EEG-simultaneous-with-
forehead EMG-response-to-finger-movement (Aa-EEG/AEMG)”. Esse modelo compara
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Figura 2: Sistema para controle de drtese de cotovelo extraido de [2].

os sinais de EEG e EMG de diversas pessoas com niveis de proficiéncia musicais diferentes

para encontrar uma caracterizacao na performance psicomotora.

2.2 Dataset

Para progredir com nosso projeto, escolheu-se usar os dados ja coletados para poder
trabalhar com os sinais EMG e EEG [3]. Os dados referem-se a um experimento cujo
o objetivo foi fornecer dados para a melhoria da comunicagao entre usuarios e interface

cérebro computador (BCI).

O experimento, que envolveu 25 participantes realizando 11 diferentes pares de mo-
vimentos e movimentos imaginarios de membros superior durante 3 dias, resultou em um
enorme banco de dados - tanto nao processados quanto processados - de sinais sEMG e
EEG. Os movimentos sao separados em 3 classes: arm-reaching, hand-grasping e wrist-
twisting, representados na Figura 3. Cada movimentagao segue um protocolo de descanso,
aviso visual do préoximo movimento e realizacao do movimento ou movimento imaginario
- seguindo o padrao temporal de 4 segundos, 3 segundos e 4 segundos, respectivamente,

como visto na Figura 4.

Para a coleta de dados, foram utilizados 7 canais de sinais sEMG - envolvendo 6
diferentes musculos do brago (extensor ulnar do carpo, extensor dos dedos, flexor do
carpo radial, flexor ulnar do carpo, biceps braquial e triceps braquial) e o cotovelo como
sinal de referéncia, e 60 canais de sinais EEG, além de mais 4 canais de sinais de eletro-
oculografia (EOG) para eliminar sinais falsos de EEG. A montagem dos eletrodos pode ser
observada na Figura 5. Todos sinais foram capturados em uma frequéncia de 2500Hz, com
um filtro de 60Hz. A qualidade dos dados dos sinais obtidos foram validados comparando

a acuracia dos dados obtidos com a classificacao de performance de BCI.



16

®

{0
g ex

Armereaching Hand-grasping Wrist-twisting

Pronaiion

4
=

i

Ball
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Figura 5: Posi¢ao dos eletrodos nos voluntérios extraido de [3].
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2.3 Analise de sinais EMG

A partir do sinal de EMG obtido, é possivel identificar o inicio do movimento (ON-
SET) realizado e o seu fim (OFFSET) no dominio do tempo. Existem, entretanto, algumas
dificuldades de identificacao, como por exemplo ruidos externos e distorcoes provocadas
internamente, como o batimento cardiaco. Embora alguns especialistas consigam identifi-
car visualmente apenas observando o sinal, existem também alguns métodos matematicos

que possam ajudar.

2.3.1 Deteccao de Onset

Com o objetivo de trabalhar com os dados EMG coletados, deve-se compreender a
deteccao da ativacao dos misculos - ONSET /OFFSET de cada sinal. E fato que o método
mais acurado e preciso de detecggo ONSET /OFFSET é o visual, porém é necessario uma
pessoa especializada para tal método. Foi proposto em [4] um método mais simples e
sem necessidade de um profissional ou um processo de treinamento anterior. Tal método
foi aplicado em cima dos dados de sinais EMG coletados do movimento de abrir e fechar
da mao. O método consiste em calcular o valor médio absoluto em janelas; utilizar um
threshold baseado na taxa constante de alarme falso; e processar com o algoritmo de
morphological hole filling. Comparou-se o resultado de tempos de ONSET/OFFSET com
um sinal referéncia a partir de um giroscopio colocado no dedo médio, e com mais dois
métodos regularmente usados: extended double threshold method (eDTM) e novel double
threshold algorithm (nDTA). Os tempos de ONSET e OFFSET do método proposto ficou
mais préoximo da referéncia do que os métodos usuais de deteccao, como visto na Figura

6, comprovando assim a eficicia do método proposto.

©
E 'Ll—Tf|_ Ground Troth
EL i ' """"" _ap, [re]
< -
I = W
T, T Proposed
eDTA [17]
I | nDTM [14

Time (s)

Figura 6: Comparagao entre o algoritmo proposto com demais métodos [4].
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O método de extended double threshold algorithm (eDTA) foi apresentado em [5].
Esse método apresenta uma maneira diferente de otimizacao de parametros para obter os
thresholds. A principal diferenca na selecao é a utilizacao de parametros nao globais para
a selecao do threshold, mas sim baseado em parametros obtidos por meio da realizacao de
uma média mével. O processo feito foi comparado com uma analise obtida de especialistas

e apresentou uma boa concordancia nos dados.

O método do eDTA é divido em sete partes, com a sétima etapa sendo usada para
o caso de movimentos que possuam duas componentes e seja desejado obter os ONSET
e OFFSET do conjunto como um todo. As seis etapas obrigatérias sao: Baseline Detec-
tion; First threshold using baseline parameters; Second threshold using on time; Third
threshold using off time; Prune short events; Prune non-typical bursts. Para cada um
das etapas é necessario fornecer alguns valores de entrada, além dos dados de EMG, que
servem para controlar as caracteristicas dos threshold. Pode-se observar na Figura 7

exemplos da deteccgao e eficiéncia do algoritmo utilizado no sinal de EMG.
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Figura 7: Exemplo de um burst curto e um burst nao tipico, extraido de [5]

No trabalho [17] foi apresentado o método novel double threshold algorithm (nDTA).
O método nDTA é similar ao método tradicional de double threshold, mas tem como
diferencial a selecao dos parametros de deteccao antes e durante os testes. Os métodos
tradicionais de double threshold utilizam dados médios de testes para obter os valores
de threshold do sinal de EMG para deteccao de ONSET e OFFSET, entretanto para
sinais onde o signal to noise ratio, razao de sinal para ruido, (SNR) é varidvel, a detecgao
de ONSET e OFFSET pode ser prejudicada. Desse modo o nDTA propde que a cada
deteccao de burst de sinal, seja feita uma reavaliacao do SNR e dos valores de threshold.
Ao final, foi comparado os resultados de deteccao do método classico com o nDTA, e foi

observado uma melhora consideravel para casos de SNR varidveis.
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2.3.2 Classificagao de movimento

Além da informacao de inicio de movimento, pode-se também extrair do sinal de
EMG informagoes capazes de construir um classificador de movimento, partindo do con-
ceito de aprendizado de maquina. O processo de classificagao do sinal pode ser resumido
em 3 etapas (no aprendizado supervisionado) ou 4 etapas (no aprendizado nao super-
visionado) [18]. A primeira etapa é segmentar os sinais que representam o movimento
realizado em janelas, adjacentes ou sobrepostas. Em seguida, sao extraidas de cada janela
caracteristicas (features) que vao ser os indicadores do classificador. Essas caracteristicas
podem ser escolhidas dependendo do dominio trabalhado: tempo, frequéncia ou tempo e
frequéncia. No dominio do tempo, as caracteristicas mais comuns sao as de valor médio
absoluto e a raiz média quadrada. E recomendado antes de extrair as caracteristicas
que o sinal ja esteja processado, uma vez que o sinal bruto pode ter baixa eficiéncia na

classificagao [19].

No caso em que o aprendizado de méaquina seja nao-supervisionado, deve-se aplicar
uma clusterizacao nos dados obtidos, para poder identificar os grupos. A etapa final entao
é fazer o treino do classificador e o seu teste, com base de sinal diferente, para avaliar
a eficiéncia do classificador. A entrada do classificador sao as caracteristicas extraidas
do sinal e a saida a classe do movimento. Existem varios tipos sistemas de classificado-
res, sendo o mais comum e mais simples o Linear Discrimination Analysis (LDA). Para
evitar sobrecarregar o classificador, pode-se optar por utilizar um método de redutor de

dimensao, como o Principal Component Analysis (PCA) [19].

2.4 Analise de sinais EEG

Outro método de detecgao de movimento é a observacao de Event-Related Desyn-
choronization (ERD) e Event-Related Synchronization (ERS) a partir dos sinais de EEG.
Esses dois padroes do sinal sao considerados a indicar a ativacao da parte do cortex motor
durante planejamento, execucao e finalizagao do movimento. Ambos eventos podem ser
interpretados no dominio do tempo [20]. Portanto, ERD e ERS sao aspectos confidveis

para a identificacao do movimento no tempo.
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2.4.1 Identificagao do ERD/ERS

Event-related desynchronization e event-related synchronization sao fenémenos cau-
sados a partir de mudancas, decremento ou incremento, da sincronizacao de atividade
neural. Esses dois fenomenos refletem mudancgas no comportamento da frequéncia do
sinal EEG, que indicam a inicializacao (dessincronizagao) e finalizagao (sincronizacao) de
algum movimento ou intengao de movimento do ser humano. Para medir tais fenémenos,
é utilizado a relacao entre poténcia do sinal EEG dentro das bandas de frequéncia e a
poténcia base do mesmo na mesma banda de frequéncia, gravado antes do evento acon-
tecer. Assim, ERD e ERS representam porcentagens de incremento ou decremento de

poténcia do sinal.

O método segue as seguintes etapas: filtro passa-banda de todos os eventos (movi-
mentos do voluntario); obter a poténcia da amplitude dos sinais e calcular a variancia de

ponto a ponto; obter uma média mével entre essas poténcias [21].

E relevado no artigo que a atividade de movimento ativa o fenémeno de ERD na banda
alpha de frequéncia, ativando dois padroes diferentes de dessincronizacao. Na faixa de 7 a
10Hz (Lower alpha desynchronization) é obtido a partir de qualquer tipo de atividade, ja
na faixa de 10 a 12Hz (Upper alpha desynchronization) é obtido a partir de processamento
de informacao semantica-sensorial. Movimentos voluntarios resultam dessincronizacao na
lower alpha band e upper alpha band, aproximadamente 2 segundos antes do ONSET do

movimento.

O trabalho de [22] busca encontrar uma relagao entre habilidades cognitivas e con-
vulsoes pouco frequentes em criancas com epilepsia focal nao sintomaticas. Para o tra-
balho foram estudados 6 criangas com epilepsia e 11 criancas sem a doenca, usadas como
grupo de controle. O experimento obteve dados de EEG em 4 faixas de frequéncia de inte-
resse (4-6 Hz, 6-8 Hz, 8-10 Hz e 10-12 Hz) durante tarefas de meméria auditiva. Em cada
um das faixas de frequéncias o sinal foi elevado ao quadrado e suavizado por uma media
movel. Para obter as taxas do sinal, tanto de ERD quanto ERS, foi utilizado uma janela
de 1,5 segundos da posicao de descanso como sinal de referéncia e a taxa foi calculada
aplicando 100% x (energia durante referéncia - energia durante experimento)/(energia
durante referéncia). O estudo concluiu que as diferencas na faixa de baixa frequéncia
(4-8 Hz) nas criangas com epilepsia, quando comparados com pessoas saldaveis da mesma

faixa etaria, podem indicar que as convulsoes afetem a memoria.
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2.5 Coeréncia de sinais

A coeréncia dos sinais de EMG e EEG nao s6 avaliam a relacao entre os sinais, como
podem também indicar diferengas entre pessoas sauddaveis e pessoas com alguma doenca
neurologica. O sinal de EEG e EMG possuem magnitudes e comportamentos distintos,

trazendo variagoes nos resultados dependendo das condi¢oes dos trabalhos.

No artigo [23] pode-se entender melhor os processos para o cdlculo desse dado es-
tatistico. Para investigar de melhor forma a atividade do sistema nervoso central de
pacientes de com distonia focal na mao (FHD), é utilizado a métrica de CMC para com-
parar os resultados de uma pessoa saudavel e uma portador da doenca. O experimento
realizado foi o descanso da mao tanto para o voluntario saudavel quanto para o portador
de FHD. Os dados foram coletados a 1kHz, e no pré-processamento foi usado um filtro
de 4Hz 45Hz para o EEG e 50Hz 350Hz para o EMG.

Observou-se entao nos resultados que os picos acima do nivel de confianga que mais
se destacaram foram ao redor das frequéncias de 5Hz 20Hz (banda de frequéncia a e f3),

enquanto nos pacientes com FHD houve picos também na regiao de maior frequéncia.

Os valores obtidos de CMC sao afetados por multiplos fatores, como a magnitude
da forga do sujeito e o tipo (estético ou dinamico), a satide, o design do experimento
(movimento e musculos), a idade e as bandas de frequéncia [24].Na maioria dos casos,
entretanto, é melhor observado picos do valor de coeréncia acima do nivel de confianca
para frequéncias de banda [, especialmente entre 13Hz 21Hz e 21Hz 30Hz [25]. Um
exemplo dado nos artigos é a doenca de Parkinson, onde os valores de coeréncia podem

ser observados na regiao de 4 6Hz e 8 12Hz.
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Figura 8: Passo a passo do método utilizado para calcular a coeréncia [6]

O trabalho [6] teve como meta melhorar a coeréncia entre os sinais de EEG e sEMG,
antes baseada na transformada de Fourier (considerando o sinal como estacionério). Como
o sinal do EEG ¢é muito mais fraco que o EMG, a coeréncia entre eles é baixa. Para isso é
proposto um algoritmo para o pré-processamento do sinal EEG a partir de parte do EMG
mais significante e, assim, a coeréncia do sinal EEG pré-processado e o sinal EMG sao
analisados pela wavelet coherence (Figura 8). O experimento foi aplicado aos movimentos
gerados pela mao, porém analisando os movimentos de abrir e fechar da mao e o torcer do
pulso. Os dados foram obtidos com uma frequéncia de amostragem de 512Hz, os eletrodos
posicionados nos musculos do pulso direito e o canal de EEG utilizado para a coeréncia
foi o C3, eletrodo central principal do lado esquerdo. Os resultados indicam que esse
algoritmo consegue melhorar a coeréncia entre os sinais EEG-EMG, comparados com os
resultados obtidos de Magnitude Squared Cohenrence (MSC) ou CMC. Além disso, dos
resultados pode-se extrair diferentes valores de coeréncia para diferentes musculos e movi-
mentos, podendo levar a uma futura classificacao de movimentos a partir das coeréncias.
Deve-se notar que experimento estd limitado para parametros especificos, sinais EEG e

EMG de mesma frequéncia e pessoas saudaveis.



23

3 OBJETIVO

O principal objetivo do projeto é a criagao de um sistema de software responsavel por
detectar a intencao e inicializacao do movimento, a partir dos sinais de EEG e EMG, e
identificar a relacao temporal entre as duas. Espera-se que a adequacgao temporal entre
a intencao do usudrio e a acao do exoesqueleto contribua para melhorar a sensacao de

controle do usuario sobre o dispositivo.

O objetivo principal pode-se entao ser divido em 3 partes: deteccao de movimento dos
sinais EMG; deteccao de intengao de movimento dos sinais EEG; correlagao dos inicios de
movimento de cada resultado obtido e andlise da coeréncia entre os dois sinais diferentes.
Para a detecgao do movimento do sinal EMG, o foco é sobre a identificagao do ONSET
e do OFFSET no sinal, ou seja, a identificacdo do comeco e fim do movimento a partir
do sinal. Ja no sinal de EEG, o propdsito é analisar os event-related desynchronization
(ERD), evento relacionado a inicializagao da inten¢ao do movimento. Apds obter as duas
primeiras partes do objetivos, sera entao feita a correlacao temporal e aplicar conceitos
de coeréncia entre os sinais para encontrar as bandas de frequéncia nas quais os sinais

possuem maior coeréncia.
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4 REQUISITOS

Para que os objetivos do projeto sejam alcangados, ¢ necessario garantir que os
métodos de deteccao sejam eficientes, tanto para os sinais de EMG quanto para os si-
nais de EEG. Somente a partir das detecgoes é que o programa sera capaz de identificar
o tempo entre a intengao de movimento e a coeréncia dos sinais. O programa deve ser
responsavel pela deteccao e andlise dos resultados, dentro da linguagem de programacao

Python.

O algoritmo utilizado para detectar os ONSETs e OFFSETs de movimentos no sinal
de EMG deve ser capaz de detectar a maioria dos movimentos realizados em todo experi-
mento: quanto mais movimento forem detectados, melhor seréd a confiabilidade da relagao
temporal e da coeréncia dos sinais. Além disso, o programa deve ser capaz de identificar
o ERD no sinal de EEG a partir dos movimentos encontrados, o tempo médio entre o
ERD e o ONSET e as bandas de frequéncia nas quais a coeréncia é relevante durante o

movimento. Assim, os requisitos do projeto podem ser resumidos na tabela 1.

Requisitos do projeto

1. Deteccao da maioria dos movimentos dentro dos sinais de EMG da base de dados
2. Capacidade de identificar o ERD no sinal de EEG

3. Identificacao do tempo médio entre o ERD e ONSET

4. Identificagdo das bandas de frequéncia de maior coeréncia entre os sinais de EMG
e EEG durante o movimento

Tabela 1: Requisitos do projeto
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5 EMBASAMENTO TEORICO

5.1 Eletromiografia e Eletroencefalografia

O EMG ¢é um método de detecgao e medigao de sinais elétricos gerados pelos misculos
durante sua contragao, representando atividade neuromuscular [26]. E possivel obter os
sinais de EMG de duas maneiras diferentes, eletrodos invasivos e nao-invasivos. Os eletro-
dos invasivos consistem de agulhas que sao inseridas diretamente no musculo, enquanto

eletrodos nao-invasivos sao colocados na superficie da pele.

EEG é um dos métodos de medicao de atividade cerebral [27]. Os sinais medidos por
meio de EEG sao sinais elétricos causados pela superposicao e sincronizacao de ativida-
des neuronais do cérebro que sao captadas por meio de eletrodos posicionados no couro
cabeludo. A medicao de sinais de EEG ocorre com a utilizagao de eletrodos especifica-
mente colocados em pontos cruciais pelo couro cabeludo, capazes de identificar atividade

cerebral consequentes da ativagao muscular.

5.2 Pré-processamento

Ao captar os sinais de EEG e EMG geralmente é captado diversos artefatos indeseja-
dos. Dentre os artefatos os mais comuns e conhecidos sao a interferéncia da rede elétrica,
o movimento dos olhos e de piscar. Por isso é necessario realizar um pré-processamento
no sinal obtido. E utilizado um filtro do tipo notch para remover a interferéncia da rede
elétrica. Outro motivo para o pré-processamento é um filtragem do tipo passa-banda, com
o intuito de obter apenas as faixas de frequéncia de interesse para o estudo em questao.

Os limites do filtro variam para sinais de EEG e EMG.

O método mais utilizado para realizar o pré-processamento de dados é utilizando filtro
de Butterworth. Uma das caracteristicas desse filtro é que ele apresenta um ganho mais
uniforme, sem ondulagoes, para as regioes da banda passante. E muito comum utilizar

filtros de ordem bastante elevadas, quarta a oitava ordem, pois o filtro de Butterworth
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mantém o mesmo formato para ordens elevadas, apenas reduzindo a variacao do ganho

na regiao da banda rejeitada.

5.3 ONSET/OFFSET

ONSET e OFFSET sao os instantes de tempo em que ocorrem, respectivamente,
o inicio da ativacao muscular e o término da ativagao muscular. Entretanto como os
sinais do corpo humano nao sao do tipo binario, ativado ou desativado, esses instantes
sao obtidos com base em threshold de valores. Portanto, a andlise de identificacao dos
ONSETs e OFFSETs nao sao sempre de exata precisao, e deve-se utilizar um algoritmo
para detectd-los no sinal de EMG, evitando ruidos externos como picos de movimentos

indesejados ou falhas na hora de captacao.

Entre os algoritmos de deteccao de ONSET e OFFSET, o extended double threshold
algorithm (eDTA) apresenta resultados préximos aos identificados por profissionais [5].
O eDTA é composto por 7 etapas, nas quais sao necessarias fornecer alguns valores de
entrada com intuito de controlar as caracteristicas dos thresholds. Esses valores sao :
Tamanho do segmento de baseline (L;); O rank da média mével para sele¢ao do segmento
de baseline (K*b); Ntimero de desvios padrdes do segmento de baseline (Nsd); Tempo,
em segundos, para detec¢ao de um ONSET (T,,); Tempo, em segundos, para detecgao de
um OFSET (T,); Tempo, em segundos, para o menor tamanho de um burst de sSEMG
(T); Numero de desvios padrdes do valor quadratico médio dos burst de sEMG (N,);
Tempo, em segundos, para o tempo maximo em que dois burst de SEMG estao separados

para serem considerados apenas um burst de sEMG (7).

A primeira etapa é a baseline detection, um procedimento para se obter parametros
iniciais que serao utilizados durante o primeiro threshold. Nessa etapa o sinal de sSEMG ja
pré-processado ¢ retificado e entao é passado uma média moével de tamanho L; segundos.
Com os dados da média mével é selecionado o K1 menor valor obtido como sendo o
segmento de baseline. Com o segmento selecionado é calculado sua média e seu desvio

padrao.

O primeiro threshold é obtido utilizando o dados original de SEMG@G, sem ser retificado,
e os valores da média e desvio padrao obtidos anterioremente. Essa etapa consiste em
selecionar todos os dados que possuem um valor superior a média somada a N,g nimeros de
desvio padroes e criar uma nova lista de dados substituindo por 1 onde os valores de sEMG

ultrapassam o baseline e 0 onde nao ultrapassam. Com isso obtemos diversos pontos de
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possivel ativacao muscular durante o sEMG. O segundo threshold utiliza os dados obtidos
do primeiro threshold para obter uma primeira versao dos pontos de ONSET e OFFSET.
Esse processo consiste em verificar todos os valores que ultrapassaram o valor do primeiro
threshold e considerar a existéncia de um par ONSET e OFFSET quando se existe uma
sequéncia de 1’s com duracao superior a T,, segundos. Esse segundo threshold é capaz

de remover varios falsos positivos gerados pelo primeiro threshold.

O terceiro threshold utiliza os valores dos ONSET e OFFSET obtidos anteriormente
para unificar ONSET’s que estejam separados por menos de 7T,¢; segundos. Desse modo
unimos pontos que fazem parte de um burst de sSEMG mas cujo valor medido era menor
que o primeiro threshold. O quarto threshold remove pares de ONSET e OFFSET que
possuem duragao menor que 7y segundos. Essa operacao é realizada para permitir uma
maior sensibilidade do T,, do algoritimo. Por fim removemos burst que possuem um
tempo de duracgao relativamente elevado, mas cuja amplitude é baixa. A maneira para
se efetuar essa remocao é obtendo os valores médios quadraticos para cada conjunto de
ONSET e OFFSET, obter a média e desvio padrao dos valores médios quadraticos e
considerar apenas os sinais que possuem uma média quadratica superior a media somada
a N, desvios padroes. Podemos observar na Figura 7 dois tipos de situacao que sao
removidas durante os dois tultimos thresholds. Na esquerda vemos um burst de curta
duracao que havia sido considerado nas etapas anteriores, mas que foi removido durante
o quarto threshold, e na direita vemos um burst de duracao considerada pelo algoritimo,

mas cuja amplitude nao condizia com os outros bursts.

5.4 ERD

O ERD (Event-Related desynchronization) é uma queda na energia no sinal de EEG
em determinada frequéncia. Este fenémeno junto ao ERS (Event-Related Synchroniza-
tion) fazem parte dos ERPs (Event-Related Potencials), que sao mudangas na atividade
cerebral através de algum tipo de evento [20]. Em um sinal de EEG a partir de uma pes-
soal saudavel, o ERD indica a ativagao do cértex motor durante o planejamento de algum
movimento, enquanto o ERS indica a recuperacao das atividades neurais consequentes,
ambos relacionados no dominio do tempo com o evento. O ERD e ERS, além de trazer
essa informacao, podem ser utilizados para identificar anomalias das atividades neurais
causadas por doencas como Parkinson, com comportamentos diferentes em certas regioes

de frequéncia.

Para identificar o ERD no sinal de EEG, é necessario realizar 3 etapas: filtrar o sinal
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EEG para as bandas de frequéncias relacionadas ao evento, sendo a banda alpha a mais
significante; elevar ao quadrado as amplitudes do sinal para obter a poténcia; obter a

média das poténcias entre todos os segmentos de movimento.

5.5 Coeréncia entre os sinais

A coeréncia é uma analise para relacionar dois sinais no dominio da frequéncia. O
célculo desse dado estatistico parte da densidade de poténcia espectral (PSD), e o seu

valor varia entre 0 e 1.

No contexto dos sinais de EEG e EMG, existe a Coeréncia Corticomuscular (CMC),
com objetivo de estudar as conexoes funcionais e interacoes das atividades do cortex
cerebral e a atividade do musculo. [24] Além disso, o CMC pode contribuir no ambiente
médico, como indicador de doencgas neurdgicas ou sinais de recuperacgao de derrames, e no
ramo de pesquisa de robos biomédicos, préteses e reabilitagao [25]. A férmula do CMC
é dada na férmula 5.1, onde P,(f) e P,(f) sao as densidades de poténcia espectrais de
cada sinal, e P,, 5.2 o valor da densidade de poténcia espectrais cruzados (CPSD). Para
avaliar a confiabilidade dos resultados obtidos, é calculado um nivel de confianga (CL),
dada a féormula 5.3, onde « é a porcentagem de confianca e N o niimero de segmentos

usados para estimar a coeréncia.

Pu(f)
Cohg, = 5.1
= TR VR o
Polf) = 2 3 XAPYI() 52
CL:1—(1—a)(N1_1) (5.3)

Mesmo sendo um método comum e comprovado para as analises relacionais de cértex
e musculo, os resultados obtidos de coeréncia e banda de frequéncia dentro CMC podem
variar bastante, uma vez que o sistema neural é extremamente complexo e pode depen-
der das condigoes da pesquisa em si: movimento realizado, idade dos voluntarios e suas

saudes.
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6 METODOLOGIA

6.1 Coleta de dados e pré-processamento - sinais EMG
e EEG

Os dados dos sinais de EMG e EEG serao coletados de uma base de dados originada a
partir de um experimento de movimento do membro superior. Os voluntarios obedeceram
a uma ordem de trées classes movimentos distintos, com 50 repeticoes de cada movimento
dentro da classe, durante trés sessoes. Os eletrodos foram posicionados na cabeca, para os
sinais EEG, e nos musculos do membro superior, para os sinais EMG. A captura dos dados
foi feita dentro de uma frequéncia f = 2500H z [3]. Pode-se encontrar mais informagoes

dos dados coletados na sessao 2.2 .

Para ser possivel utilizar os dados de EMG posteriormente, serd realizada uma série de
processamento nos dados. As etapas do pré-processamento podem ser vistas nas Figura
9 e Figura 10, onde a segunda imagem apresenta uma visao mais aproximada do sinal. O
primeiro gréafico ¢ o sinal original como obtido da base de dados. Nesse sinal é aplicado
um filtro Butterworth passa-banda de quarta ordem de fase zero, dentro da faixa de
frequéncia de 10H z a 490H z, a faixa de frequéncia relativa a parte motora. O sinal apds
o filtro pode ser observado no segundo grafico. O proximo passo é realizar uma retificagao
de dados, uma vez que para a deteccao de ativacao muscular é mais importante o valor

absoluto do sinal.
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Etapas do pré-processamento de EMG
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Figura 9: Etapas de pré-processamento do sinal de EMG.
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Figura 10: Detalhamento do pré-processamento do sinal de EMG

Como os dados obtidos da base de dados sao extensos, aproximadamente 1 hora de
duragao gravadas em uma frequéncia de amostragem de 2500H z em 6 canais diferentes,
realizar a deteccao de ONSET e OFFSET em todos os dados seria uma tarefa que ne-
cessitaria de um grande poder computacional e demoraria muito tempo. Para reduzir o
tamanho dos dados decidiu-se realizar uma reducao de frequéncia nos dados. Para isso
foi aplicado um novo filtro Butterworth passa baixa de quarta ordem de fase zero com

frequéncia de corte de 30H z. Esse filtro é suficiente para obter as ativagdes musculares,
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que sao repetidas a cada 11 segundos e tem duracao de 4 segundos. Por fim foi feito uma

redugao de amostragem para reduzir a frequéncia do sinal de 2500H z para 100H z.

De maneira similar os dados de EEG também deverao ser pré-processados para po-
derem ser usados posteriormente. Entretanto como sao necessarios uma quantidade bem
menor de dados de EEG para a andlise do ERD, uma vez que sao utilizados apenas trechos
do sinal ao redor do inicio do movimento, nao é necessario realizar nenhuma mudanca de
frequéncia e nem retificagao. Desse modo o tnico pré-processamento efetuado é um filtro
no sinal de EEG extraido do banco de dados. O fltro utilizado é um Butterworth passa
banda de quarta ordem de fase zero nas frequéncias entre 8 Hz e 12H z, como mostrado

nas Figura 11 e Figura 12.

Etapas do pré-processamento EEG
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Figura 11: Etapas de pré-processamento do sinal de EEG.
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Etapas do pré-processamento EEG

Tempo (s)

Figura 12: Detalhamento do pré-processamento do sinal de EEG

6.2 Deteccao de ONSET e Offset do sinal de EMG e

classificacao do movimento

A partir dos dados de EMG pre-processados, serd utilizado o algoritmo de extended
Double Threshold Algorithm(eDTA) [5] para encontrar os pontos de ONSET e OFFSET
do movimento. Com base nos codigos em matlab apresentados no artigo, o algoritmo,
junto com suas respectivas funcoes e leituras de dados, sera replicado no ambiente de
programacao Python. Assim, a partir dos dados pré-processados anteriormente, sera
possivel encontrar o momento em que houve um inicio na atividade motora, representando
um comeco de movimento. O funcionamento do algoritmo pode ser observado nas Figura

13 e Figura 14, sendo a ultima uma versao focada da primeira.

O algoritmo tem como primeira etapa o calculo da média e desvio e padrao de um
segmento de dado considerado inativo. A duracao do segmento de dado é fornecido ao
c6digo e pode ser modificado dependendo do experimento. O segundo passo é identificar
quais sequencias de ativagao muscular, obtidos anteriormente, possuem duracgao superior a
um determinado threshold, definido pelo usuério. Desse modo obtém-se pares de ONSET
e OFFSET, onde se inicia e termina uma ativagao muscular. O préximo passo € unir pares
que estejam distanciados por uma duracao inferior a um threshold, também definido pelo
usuario. Essa etapa serve para unir ativagoes musculares de um mesmo movimento, mas

que o algoritmo considerou como dois movimentos. O quarto passo é remover pares
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com duracao inferior a um threshold de duracao, controlado pelo usuéario. Desse modo
se retira qualquer possivel espasmo muscular detectado que nao pode ser considerado
um movimento. Com os pares obtidos até o momento é calculado a média e o desvio
padrao a partir da raiz do quadrado médio (RMS) do sinal entre os momentos de ativagao
muscular, e assim sao removidos os conjuntos de dados que possuam sua RMS fora da
faixa de mais ou menos a soma da média com o desvio padrao multiplicado por um
threshold selecionado. Por fim, aplica-se uma logica similar a terceira etapa, mas agora
com um tempo relativamente maior, e junta-se qualquer conjunto de ativagao de um

mesmo movimento que estavam separadas.

Etapas de obtengdo de Onset
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Figura 13: Etapas de obtencao de ONSET
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Figura 14: Etapas de obtencao de ONSET (focado)

Pela aplicacao do eDTA obtém-se 6 conjuntos de ONSETs e OFFSETSs, um para cada
canal de EMG. Para reunir esses conjuntos em apenas um, realiza-se mais duas etapas
de processamento. A primeira consiste em considerar uma ativagao muscular apenas os
instantes de tempo onde houve ativacao em mais de N canais simultaneos, onde N ¢é
definido na utilizacao do cddigo. Por fim, considera-se para os dados do experimento
utilizado que qualquer ativacao muscular com duracao superior a 6 segundos ou inferior a
2 segundos poderia ser descartada para andlise, uma vez que o movimento do experimento
tem duracao de 4 segundos e ativacoes muito maiores ou menores podem ser consideradas

de detecgao ruim para analise.

6.3 Identificacao do ERD do sinal de EEG

O préximo passo é aproveitar dos sinais EEG. Baseado nas pesquisas de colegas de
doutorando e iniciacoes cientificas, adotou-se o método de identificar o Event Related
Desynchronization (ERD) para avaliar as detecgoes de movimento. Esse também serd

adaptado para o ambiente de programacao escolhido.

Para visualizar o ERD sera utilizado os dados de ONSET obtidos anteriormente para
obter os momentos de inicio de movimento. O primeiro passo ¢ passar os dados de EEG
por um filtro Butterworth passa-banda de quarta ordem de fase zero, dentro da faixa de
frequéncia de 8 Hz a 12Hz, que é a principal faixa de frequéncia para se obter o ERD

(banda « de frequéncia). A partir dos instantes de inicio de movimento, utiliza-se os
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Figura 15: Processo de identificacao do intervalo de tempo entre a intengao e inicializagao
do movimento

dados de EEG em um intervalo de -3s a 4s do ONSET. Desse modo ¢é obtido a completa
duracao do movimento efetuado e uma duragao anterior ao mesmo, onde pode se detectar
o ERD. O préximo passo é obter a relagao de energia do sinal nos instantes de interesse,
e para isso eleva-se o sinal ao quadrado. Por fim aplica-se uma média médvel no sinal

resultante para suavizar o sinal.

Como o sinal de EEG apresenta muito ruido, tanto de outras ativagoes cerebrais nao
relacionadas ao movimento, quanto de dificuldades em obter o sinal do cérebro através do
cranio, a média de varias amostras de movimento é calculada com intuito de remover esse
ruido. Finalmente, obtém-se a relagao temporal do ERD e o ONSET, como mostrado na

Figura 77.

6.4 Coeréncia dos sinais

Para finalizar o trabalho apresentado, sera realizado o cédlculo da coeréncia dos sinais
EMG e EEG. Existe uma vasta literatura que aborda estudos da relacao entre o EMG e o
EEG, sendo a coeréncia um dos métodos mais comuns. A partir dos resultados observados
no estado da arte, sabe-se que, no geral, valores de coeréncia corticomuscular resultam
em picos na regiao de frequéncias entre a regidao a e o inicio da 7y (7-50Hz). O intuito
da andlise do CMC (5.1) neste trabalho é ndo sé6 certificar que os sinais estao coerentes
entre si, apresentando valores altos relativos na regiao esperada, como também observar

comportamentos diferentes relacionados ao design deste experimento.
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O estudo da coeréncia dos sinais serd realizado em trés etapas: pré-processamento,
amostragem dos sinais e célculo e plotagem da coeréncia para as regioes de frequéncia. Na
primeira parte, com base nos estudos ja realizados, os sinais de EEG e EMG sao filtrados
em um filtro de passa-banda semelhante ao utilizado na deteccao de ONSET do EMG e
na deteccao de ERD no EEG, porém com frequéncias que abrangem a regiao de interesse.
Para o sinal de EMG, a banda de frequéncia escolhida foi de 13-100Hz e para o EEG
8-30hz. E também realizado uma re-amostragem do sinal, de 2500Hz para 500Hz, devido

ao enorme quantidade de informagao do sinal.

A coeréncia do sinal inteiro é ineficaz, pois pode apresentar excesso de informacao
e picos de coeréncia em frequéncias fora do interesse. Assim, serd analisado apenas nas
regioes de movimento. Para isso, utilizaremos novamente a informacgao coletada de tem-
pos de inicializacao de movimento, a partir da deteccao do ONSET, assim cortando em
sinais menores com informagao essencial. Os 7 segundos utilizados como base para a

identificagdo do ERD também sera considerado nesta parte de coeréncia.

Finalmente, como auxilio da biblioteca de analise de sinais do python utiliza-se as
fungoes de coeréncia ( scipy.signal.coherence ) e a fun¢do que plota o gréfico ( matplo-
tlib.pyplot.cohere ), que seguem o mesmo principio do calculo de CMC. A fungao de janela
utilizada para o calculo de coeréncia é a Hann, a mais comum. As configuragoes para a
fungao sao as padroes, havendo sobreposi¢ao e tamanho da janela igual a 256. A funcao
logo retorna as magnitudes quadraticas de coeréncia dos finais, junto com as frequéncias

nas quais elas se estabelecem, em forma de array.

Como visto na literatura, o processo de calculo de coeréncia pode variar em relagao
aos filtros e parametros utilizados, portanto é importante notar que nao ha certeza na

melhor forma de se calcular a coeréncia, dado o design do experimento.
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7 RESULTADOS E DISCUSSOES

Nessa secao sera abordado os resultados obtidos. Sera avaliado o método de deteccao

de cada sinal individualmente e como eles se complementam.

7.1 Algoritmo de deteccao de ONSET e OFFSET

Com base no programa de MATLAB apresentado em [5], replicou-se a légica do pro-
grama no ambiente de programacao Python. Com a utilizacao do algoritimo de detecgao
de ONSET e OFFSET, e os parametros apresentados na tabela 2 baseados em [5], foi
possivel obter duas listas com os instantes de tempo onde ocorrem, respectivamente, os

ONSETs e os OFFSETSs do sinal.

Pode-se observar o resultado na Figura 16 e Figura 17. Cada grafico representa um
dos seis sinais gravados de EMG, os pontos verdes sao os instantes de ONSET, inicio da
ativacao muscular, e os vermelhos sao os OFFSETSs, fim da ativagao muscular, e a linha
que os une ¢ a ativacao muscular em si. Visualmente, pode-se observar que na Figura
16 existe um movimento que nao foi detectado. Isso acontece em alguns casos no qual a

amplitude é muito menor em relagao aos outros movimentos.

Parametros | Valores utilizados
Ly 100

Kb D

Nsd 3

T,, 0.1

Torr 0.05

T 0.5

Ny 1

T; 100

Tabela 2: Parametros utilizados no algoritmo eDTA para detecgao de ONSET e OFFSET



sessao 1 | sessao 2 | sessao 3
Voluntéario 1 | 218(73%) | 55(18%) | 150(50%)
Voluntario 2 | 245(82%) | 248(83%) | 249(83%)
Voluntario 3 | 112(37%) | 91(30%) | 154(51%)
Voluntario 4 | 238(79%) | 260(87%) | 258(86%)
Voluntéario 5 | 168(56%) | 217(72%) | 235(78%)
Voluntario 6 | 277(92%) | 0(0%) | 274(91%)
Voluntario 7 | 205(68%) | 210(70%) | 73(24%)
Voluntario 8 | 68(23%) | 56(19%) | 235(78%)
Voluntario 9 0(0%) 0(0%) 69(23%)
Voluntario 10 | 256(85%) | 25(8%) 25(8%)
Voluntéario 11 | 231(77%) | 245(82%) | 214(71%)
Voluntéario 12 | 191(64%) | 284(95%) | 241(80%)
Voluntéario 13 | 253(84%) | 249(83%) | 0(0%)
Voluntério 14 | 0(0%) | 116(39%) | 84(28%)
Voluntario 15 | 204(68%) | 26(9%) 7(2%)
Voluntario 16 | 96(32%) | 77(26%) 0(0%)
Voluntario 17 | 190(63%) | 90(30%) 0(0%)
Voluntério 18 | 233(78%) | 0(0%) | 258(36%)
Voluntario 19 | 286(95%) | 275(92%) | 256(85%)
Voluntério 20 | 252(84%) | 234(78%) | 180(60%)
Voluntario 21 | 6(2%) 0(0%) | 271(90%)
Voluntario 22 | 275(92%) | 212(71%) | 0(0%)
Voluntario 23 | 235(78%) | 244(81%) | 217(72%)
Voluntéario 24 | 285(95%) | 283(94%) | 26(9%)
Voluntario 25 | 193(64%) | 230(77%) | 263(88%)
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Tabela 3: Taxa de detecgao entre todos os sinais de EMG do experimento, em movimentos

detectados e porcentagem de deteccao
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Figura 16: Resultado do algoritmo de ONSET e OFFSET no dado de EMG
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Figura 17: Resultado do algoritmo de ONSET e OFFSET no dado de EMG (focado)

Com o uso do algoritimo de deteccao de ONSET e OFFSET foi possivel obter quase
que a totalidade dos movimentos realizados durante o experimento, com algumas excegoes,
como visto na Tabela 3. O principal fator para nao detectar algum movimento é o sinal
gravado ser muito fraco. Durante a execucao dos cédigos foi notado a grande sensibili-
dade dos parametros de detecgao, pequenas alteragoes nos mesmos levam o algoritimo de
detectar quase a totalidade dos movimentos para nao detectar nenhum ou as vezes con-

siderar grandes partes de sinal, incluindo momentos de repouso, como ativagao muscular



40

de movimento.

A partir dos dados obtidos de ONSET e OFFSET, obteve-se os momentos tedricos
em que cada movimento foi realizado, tanto o seu inicio quanto o seu término. A partir
desses dados temporais, juntamente com o sinal de EMG, seria possivel tentar separar os
seis tipos diferente de movimentos em grupos, dado que o banco de dados escolhido nao
possui essa distincao em seus dados. Para esse agrupamento seriam utilizados os 6 canais
de EMG, uma vez que movimentos diferentes possuem ativacao de musculos diferentes.
Entretanto ao analisar o sinal de EMG para cada um dos canais, que representam cada
um dos musculos, foi verificado que nao era possivel distinguir os mesmos, como pode
ser observado nas Figura 18 e Figura 19. Na maior parte dos movimentos todos os sinais
apresentaram caracteristicas idénticas, sendo raramente distinguiveis cada um dos canais.

Com isso foi decidido por nao realizar o agrupamento dos movimentos.

0.00020

0.00015

0.00010

0.00005

0.00000

1160 1162 1164 1166 1168 1170 1172

Figura 18: Caso mais frequente: sobreposicao dos sinais de EMG dos 6 diferentes canais

praticamente idénticos
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Figura 19: Casos menos frequentes: movimento que indica atuacao diferente entre os 6

canais

7.2 Identificacao da intencao de movimento a partir
do sinal de EEG

Utilizando os instantes de inicio de movimento obtidos pelo algoritimo de ONSET e
OFFSET foi obtido os sinais de ERD de todos os sinais. As Figura 20 e Figura 21 apre-
sentam os sinais obtidos. A primeira imagem mostra os sinais de ERD que apresentaram
um comportamento condizente com o observado na literatura, enquanto a segunda mostra

os sinais de ERD com um comportamento bem diferente.
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Figura 20: ERD de todos os sinais
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Figura 21: ERD dos sinais que apresentam uma alta diferenca do previsto

Os sinais da Figura 20 apresentam caracteristicas condizentes com o ERD, mas apre-
sentam uma consideravel variagao. A variacao do sinal de ERD pode ser considerado, em
geral, como ruido, e por isso foi feita uma média de todos os sinais, que pode ser visto na
Figura 22. Feita a média, os ruidos tendem a se anular, sobrando apenas o sinal de ERD

desejado.
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Figura 22: Média dos sinais de ERD

A partir da Fig 22 é possivel verificar que existe uma grande relacao com a intencao
de movimento, com uma queda na energia do sinal de EMG, o que caracteriza o ERD.
Essa queda pode ser percebida fortemente por volta de 1 segundo antes da realizacao
do movimento. E possivel observar que apds o inicio do movimento a energia do sinal
apresenta uma tendencia de subida. Mesmo com esse resultado positivo, o uso do EEG
para obter um possivel inicio de movimento ainda é extremamente dificil. Como visto nas
Figura 20 e Figura 21 o sinal apresenta muita variabilidade. E possivel atribuir essa grande
variabilidade com a complexidade do sinal de EEG, uma vez que eles sao obtidos a partir
de eletrodos posicionados cabeca. Por conta disso o sinal obtido é de baixa intensidade e

sujeito a interferéncia de outros sinais indesejados de outras regioes do cérebro.

7.3 Coeréncia

Os resultados da coeréncia entre os sinais e EEG e EMG obtidos pela férmula de
CMC 5.1, nao foram consistentes entre os movimentos. Dentre a vasta colegao de dados
de movimentos, escolheu-se a os sinais de EEG e EMG do sujeito 4, sessao 1 para mostrar

os resultados singulares. O canal escolhido de EMG foi o ligado ao musculo do biceps.

As Figuras 23 e 24 sao exemplos de resultados dos movimentos. Pode-se observar que
ao mesmo tempo em que alguns movimentos apresentam os valores de pico de coeréncia
na regiao esperada (13-30Hz), outros possuem comportamento inesperado. A grande

variancia do valor de coeréncia entre os movimentos pode ser explicado pela sensibilidade
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do sinal de EEG e seu comportamento complexo.

Para obter um resultado mais sélido ao longo de todos os movimentos da sessao de
dados, realizou o cédlculo de CMC a partir da média dos dados de EEG e EMG na regiao
dos movimentos, apds eles serem tratados. A Figura 25 demonstra o comportamento

obtido.

Coeréncia entre EEG e EMG de um movimento
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Figura 23: Resultado da andlise de coeréncia dos sinais de EEG e EMG em uma regiao

de movimento, a partir dos dados coletados do voluntario 4 sessao 1
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Coeréncia entre EEG e EMG de um movimento
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Figura 24: Resultado inesperados da anélise de coeréncia dos sinais de EEG e EMG em

uma regiao de movimento, a partir dos dados coletados do voluntario 4 sessao 1
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Figura 25: Resultado da anélise de coeréncia da média dos sinais de EEG e EMG pré-
processados, na regiao onde o movimento é realizado, a partir dos dados coletados do

voluntario 4 sessao 1

Pode-se observar que os picos na regiao de banda de frequéncia 3 sao visiveis, porém
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junto com outras peculiaridades. A Figura 26 representa um aprofundamento nas médias
entre os demais sessoes de coletas de dados, além de uma comparacao entre os diferentes
canais de EMG.
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Figura 26: Resultado da andlise de coeréncia da média dos sinais de EEG e EMG pré-

processados, na regiao onde o movimento é realizado, a partir de todos os dados coletados

Como visto em pesquisas anteriores, o resultado de CMC pode ser afetado por di-
versos fatores, como saide, idade, movimento, forca, tratamento de dados e bandas de
frequéncias. Os voluntarios do experimento do dataset sao apresentados como saudaveis
e nao possuem grandes diferengas de idade e todos eles sao destros. Porém o design do ex-
perimento constitui em movimentos que nao exercem forca considerdavel. Além disso, um
possivel fator que possa ter influéncia nos resultados é a grande repeticao dos movimentos
durante a sessao de coleta de dados, podendo afetar os sinais obtidos de EEG. A escolha
dos filtros para pré-processamento e bandas de frequéncia também sao responsaveis pelo
comportamento observado. Outros testes foram feitos com bandas de frequéncias diferen-

tes, mas para a analise das regioes principais, as frequéncias escolhidas foram suficientes.

Mesmo assim, ainda foi possivel identificar altos niveis relativos de coeréncia nas
regioes desejadas, com algumas observacoes de picos na regiao de 50Hz e 5Hz. O resul-
tado é suficiente para ter uma validacao das coeréncias entre EEG e EMG no desgin do

experimento.
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8 CONCLUSAO

Ao final deste trabalho pode-se concluir que o algoritmo utilizado para a deteccao de
intencao de movimento a partir do EEG e o inicio do movimento em si a partir do sinal
de EMG ¢ valido mesmo para um experimento de coleta de dados extenso e com grande
resolucao. O algoritmo para a deteccao de onset e offset apresenta parametros sensiveis,
que podem variar entre sinais de EMG e movimentos. Dos resultados da aplicacao do
algoritmo em todos sinais de EMG do experimento, utilizando os mesmos parametros de
entrada, o algoritmo foi capaz de analisar 65 de 75 amostras de sinais, obtendo uma média

de 62% de deteccao entre todos os movimentos.

Individualmente, os dados podem apresentar variancias por causa da complexidade
do sinal de EEG, uma vez que sua captacao envolve algumas sobreposicoes de sinais de
outras regices do cérebro. Pode-se, entretanto, assumir a média entre os movimentos a fim
de identificar a variagao de energia, separar os outliers e calcular o ERD do sinal de EEG,
obtendo um valor adequado. A partir do ERD, representando a intencao do movimento,

e do ONSET do inicio do movimento, obteve-se o intervalo de 1 segundo entre os dois.

E notével que este trabalho pode contribuir para futuros trabalhos dentro do assunto
de sinais EEG e EMG. Com a informacao temporal da intencao e a execugao de movimento
extraida de um banco de dados extenso, a criacao de um sistema de controle para o uso
em um exoesqueleto se torna mais aproximavel. Existe a possibilidade de obter tempos
diferentes de acordo com a satide do paciente, idade e movimento especifico, porém com
o algoritmo proposto e utilizado no trabalho se torna mais confidvel a detecgao desse
tempo. Além disso, a partir da coeréncia, sabe-se como se correlaciona os sinais dentro
do design do experimento. Assim, se torna mais rapido a deteccdo de anomalias que
podem ser relacionadas a doencas neuroldgicas. E possivel assumir também que existe
uma diferenca entre as coeréncias de movimentos diferentes, mostrando a possibilidade
de extrair uma classificacao de movimentos a partir desses sinais EEG e EMG. Porém
deve-se tomar cuidado com o posicionamento dos eletrodos responsaveis pelo sinal EMG

e a complexidade de movimentagao uma vez que no dataset trabalhado, os sinais de EMG



sao muito semelhantes entre si e nao possuem rotulos dos movimentos.
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APENDICE A — CODIGOS

Os codigos utilizados durante os experimentos se encontram no GitHub

https://github.com/thomasoshima/TCC
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