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RESUMO

Deficiência f́ısica motora é um problema que afeta milhares de pessoa no Brasil e
no mundo e a tendência é só aumentar conforme a expectativa de vida aumenta. Uma
das posśıveis soluções para um portador de deficiência é reabilitação, com o objetivo de
recuperar a movimentação do membro. Com isso em mente exoesqueletos podem ser
utilizados para oferecer uma melhor experiência de reabilitação, auxiliando o paciente
nas atividades e diminuindo os esforços do fisioterapeuta. Para o melhor uso de um
exoesqueleto deve-se ter uma sensação de controle sobre o mesmo, tanto em questão
do movimento realizado quanto do tempo de realização do movimento. Desse modo, o
prinćıpio deste trabalho é utilizar dados de eletroencefalografia (EEG) e eletromiografia
(EMG) a partir de um experimento do movimento de alcance da mão, dispońıveis em um
banco de dado público, para encontrar a relação temporal entre a intenção de movimento
e o movimento em si. Duas técnicas de detecção de movimento são utilizadas, uma
para cada sinal: o Event-Related Desynchronization (ERD) a partir do sinal de EEG,
para detectar a intenção do movimento; e a detecção do ONSET e OFFSET no sinal de
EMG, representando o ińıcio e final do movimento, respectivamente. Para complementar
o trabalho, é realizado uma análise de coerência entre os sinais. Deste trabalho conclui-se
que os métodos de detecção de movimento dos dois sinais são suficientes para encontrar o
tempo entre a intenção e o próprio movimento, mesmo apesar da complexidade do sinal de
EEG. São também definidas as bandas de frequência onde os sinais aprensentam melhor
coerência.

Palavras-Chave – EEG, EMG, Coerência, ERD, Onset/Offset, Engenharia.



ABSTRACT

Physical disability is a problem that affects thousands of people in Brazil and worldwide
and the trend is only to increase as life expectancy increases. One of the possible solutions
for a person with a physhical disability is rehabilitation, with the aim of regaining the limb
movement. With this in mind, exoskeletons can be used to offer a better rehabilitation
experience, helping the patient with activities and reducing the physiotherapist’s efforts.
For the best use of an exoskeleton, one must have a sense of control over it, both in terms
of the movement performed and the time the movement is performed. Thus, the principle
of this work is to use electroencephalography (EEG) and electromyography (EMG) data
from a hand-reaching movement experiment, available in a public database, to find the
temporal relationship between the intention of movement and the moviment itself. Two
motion detection techniques are used, one for each signal: Event-Related Desynchroniza-
tion (ERD) from the EEG signal, to detect motion intention; and the detection of ONSET
and OFFSET in the EMG signal, representing the beginning and end of the movement,
respectively. To complement the work, an analysis of coherence between the signals is
carried out. From this work, it is concluded that the motion detection methods of the
two signals are sufficient to find the time between the intention and the movement itself,
despite the complexity of the EEG signal. The frequency bands where the signals have
better coherence are also defined.

Keywords – EEG, EMG, Coherence,ERD, Onset/Offset, Engineering.
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1 INTRODUÇÃO

1.1 Motivação

Pode-se definir deficiência como toda condição que traga impedimentos f́ısicos, men-

tais, sensoriais ou intelectuais ao ser humano ao tentar realizar alguma atividade ou

interagir com seu ambiente (Lei Federal n° 13.146/2015, artigo nº2). Assim, todos estão

sujeitos a adquirir uma deficiência ao longo da vida. De acordo com a Cartilha do Censo

de 2010 [7], cerca de 23,9% da população brasileira têm algum tipo de deficiência.

Inserido nesse dado, temos que a segunda maior deficiência presente entre os brasileiros

é a deficiência motora ou f́ısica (7%) [7], cuja definição é dada pela limitação de qualquer

função motora do corpo. Esse tipo de deficiência pode ser relacionado tanto à doenças

genéticas (como a śındrome de Down) e neurológicas (como a doença de Parkinson ou o

AVC), quanto à lesões (medulares ou cranianos) [8].

Além da existente população com deficiência f́ısica, deve-se atentar também à po-

pulação que tende a adquirir tal deficiência. Com o avanço da medicina, acompanha-se

o aumento da expectativa de vida. Consequentemente, pode-se enxergar um aumento da

população idosa: de acordo com a Organização Mundial da Saúde, a população com mais

de 60 anos de idade chegará a 2 bilhões até 2050 [9]. Devido a maior idade, a pessoa

possui menos capacidade f́ısica e mental, e maior risco de doenças [9], causando maior

chance de adquirir uma deficiência f́ısica.

O cenário de deficiência f́ısica pode ser visto então, como um vasto e crescente pro-

blema. Além da dificuldade dos portadores superarem barreiras socieconômicas e f́ısicas

da sociedade, ainda necessitam lidar com a dependência de outros, afetando ambos os

lados [10]. Recorre-se, então, à engenharia para poder solucionar esse problema. Dentro

das existentes áreas de trabalho para a solução desse problema (promoção, prevenção,

tratamento e reabilitação) [8] pode-se utilizar da tecnologia da engenharia mecatrônica

para auxiliar na melhoria dos processos de assistência dos movimentos dos portadores de

deficiência motora e a seu processo de reabilitação.
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1.1.1 Reabilitação

A reabilitação tem grande importância para os portadores de deficiência f́ıscia. Tem

como objetivo a recuperação gradual dos movimentos perdidos a partir da fisioterapia e

terapia ocupacional. Mesmos nos casos em que a deficiência apresenta danos permanentes

no paciente, a reabilitação possibilita o portador a aprender a conviver com a incapacidade

motora, encontrando diferentes maneiras de se reajustar ao ambiente. Dentro dessas tera-

pias, o portador conta com exerćıcios f́ısicos e sociais para reaprender as tarefas motoras

perdidas, ganhando assim sua independência de volta.

O que realmente ocorre nessas terapias tem correlação com a neuroplasticidade e

reorganização cortical. A neuroplasticidade é uma propriedade neuroqúımica de variação

da conexão dos neurônios. Assim como um elemento plástico, essa conexão pode se

fortalecer ou enfraquecer com o tempo. A neuroplasticidade tem grande responsabilidade

da aprendizagem motora e promove a reorganização cortical no córtex do cérebro. Esse

prinćıpio permite criar novos caminhos neurais aos danificados, podendo assim reaprender

funções motoras. Ambos são resultados do exerćıcio ativos, ativo-assistidos e passivos que

ocorrem nas terapias. [8]

Todavia, no Brasil, o processo de fisioterapia é mais delicado. Pode-se então aplicar os

conhecimentos de engenharia em tecnologias para assistir os profissionais fisioterapêuticos

[11].

Equipamentos assistivos vêm ganhando espaço nas cĺınicas de reabilitação motora.

Além de minimizar o trabalho dos terapeutas, devido a automação de tarefas pesadas e

repetitivas, os equipamentos trazem mais consistência nas atividades. Assim, os resultados

são mais controlados e quantificados [8].

1.1.2 Exoesqueleto

Entre os equipamentos tecnológicos assistivos para reabilitação, podemos destacar o

exoesqueleto. Trata-se de uma tecnologia que mimetiza o exoesqueleto retratado na na-

tureza, como em insetos. O LOKOMAT [12] é um exemplo de exoesqueleto. A origem de

seu trabalho parte dos treinos em esteiras de locomoção, adotados em vários centros de

reabilitação. Geralmente nesses trabalhos, fisioterapeutas assistem o movimento das per-

nas do paciente, parcialmente colocados na esteira por meio de um sistema de suspensão.

A aplicação de um método autônomo por meio do LOKOMAT melhora a qualidade dos

resultados e permite uma maior duração, uma vez que não depende dos esforços dos pro-
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fissionais. Ao identificar esforços de movimentos, o LOKOMAT auxilia adicionando uma

força e um movimento da esteira, para a realização da marcha.

Entretanto, o trabalho a ser realizado terá o foco nos membros superiores, visto que já

existe ótimos trabalhos para os membros inferiores. Deficiência dos membros superiores

não se limitam apenas aos casos de imobilidade, mas também de doenças como o Parkinson

ou o AVC. São os membros superiores, em espećıfico os braços e mãos, os responsáveis de

tarefas mais diversas, como as de ambiente de trabalho. A reabilitação desses membros

permite a reinserção dos portadores de deficiência em ambientes de trabalhos, e com isso

menos barreiras para o paciente [13]. Os produtos Armeo são exemplos sofisticados de

exoesqueletos para membros superiores: possuem exoesqueletos ativos e passivos. A partir

de sinais EMG, o exoesqueleto auxilia no torque de flexão e extensão do braço. Por uma

malha de controle da posição, pode-se definir a força e posição do exoesqueleto [14].

1.1.3 Sistema integrado EEG e sEMG

Dentre os exoesqueletos mencionados anteriormente, todos trabalham com um mesmo

sistema de captação de esforço dos músculos. O sensor utilizado é um eletromiograma,

que permite captar a reação do músculo ao ser contráıdo ou relaxado, devido ao potencial

elétrico gerada pelas fibras musculares. O eletromiograma mais comumente utilizado é o

superficial (sEMG), pois é não invasivo ao paciente. [15]

O sinal EMG (eletromiografia) extráıdo, no entanto, apresentam rúıdos que podem

afetar a análise, diminuindo sua precisão. Filtros de controle são então utilizados nesses

casos. Todavia, a integração dos sinais EMG já usados com os sinais EEG (eletroencefalo-

grafia) é apontado por trazer resultados mais satisfatórios [6]. Os sinais EEG são captados

do cérebro, onde eletrodos monitoram as atividades elétricas. Quando uma pessoa realiza

uma atividade, essa é comandada pelo cérebro. Como os eletrodos não estão presentes

diretamente no músculo, os sinais EEG são considerados mais fracos. Assim, podemos

relacionar os dois sinais EEG e EMG, resultando numa dupla compensação dos dois.
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2 ESTADO DA ARTE

Com a finalidade de alcançar os conhecimentos atuais para a realização do projeto,

alguns artigos cient́ıficos foram selecionados para o estado da arte. Além de artigos sobre

o uso dos sinais EMG e EEG em um exoesqueleto, também escolheu-se estudar artigos

de assuntos mais espećıficos, sobre os dados do dataset escolhido, métodos de análise de

sinal EMG, métodos de análise de sinal EEG e a coerência entre as duas.

2.1 EMG e EEG em sistemas de exoesqueletos

Os trabalhos seguintes já abordam a fusão das duas técnicas. No artigo [1] é utilizado

EEG e sEMG para identificar movimentos dos membros inferiores unilaterais, uma vez

que os métodos exploram as vantagens de cada um e aliviam as limitações uma da outra.

Durante o experimento, o sujeito deveria, partindo do relaxamento (movimentação nula),

contrariar o pé (dorsiflexão ou flexão plantar), como indicado na Figura 1.

Após a filtragem e amplificação dos sinais capturados, tanto pelo EMG quanto pelo

EEG, os métodos foram avaliados pelas suas performances de captura e os sinais EMG

foram melhores que os sinais EEG, devido a aquisição direta da fonte (músculo). Porém

está mais sujeito a distúrbios e rúıdos. Ao cascatear os dois sinais, obteve-se o melhor

resultado, anulando o problema de precisão do EEG e de rúıdo do EMG.
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Figura 1: Montagem do experimento do pé extráıdo de [1].

Foi apresentado em [2] um sistema de controle do cotovelo direito utilizando sinais de

EEG e EMG gravados com o auxilio de uma Raspberry Pi 3 B+ e o conversor analógico

digital ADS1299EEG-FE. O experimento consiste em utilizar o DAS1299 para captar

os sinais EEG e EMG por uso de eletrodos passivos não invasivos e transmitir para o

Raspberry Pi. O Raspberry Pi comanda um motor DC brushless por intermédio de um

conversor de ńıvel lógico para controlar uma órtese de cotovelo. O sistema de montagem

pode ser visto da Figura 2, retirada do próprio artigo.

O primeiro passo foi utilizar o sistema para gravar o movimento do cotovelo da mão

direita repetidas vezes. Os dados obtidos foram movidos para um computador onde são

feitos o pré-processamento para remover posśıveis sinais de rúıdo. Os sinais de EEG e

EMG são processados em um computador para obter uma relação entre os sinais e os

movimentos que serão feitos. O segundo passo é extrair as frequências desejadas para

estudo, e isso é feito usando a transformada discreta de wavelet em em ambos os sinais,

EEG e EMG. Para o sinal de EEG é usado Delta-Alpha Ratio e o EMG é usado o

Quadrado Médio da Raiz para poder classificar os sinais medidos. A acurácia das medições

finais foram de 90.3% para o treinamento e de 85.2% para os testes. Grande parte da

acurácia veio do sinal de EMG, enquanto o sinal de EEG apresentou uma acurácia bem

reduzida.

Um projeto que utiliza os sinais de EEG e EMG de maneira diferente de todos os

trabalhos citados anteriormente é o apresentado em [16]. Esse trabalho propõe um modelo

matemático para a performance psicomotora dos dedos das mãos de músicos. Foi proposto

um modelo hibrido de análise chamado ”the-upper-alpha-power-EEG-simultaneous-with-

foreheadEMG-response-to-finger-movement (∆α-EEG/∆EMG)”. Esse modelo compara
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Figura 2: Sistema para controle de órtese de cotovelo extráıdo de [2].

os sinais de EEG e EMG de diversas pessoas com ńıveis de proficiência musicais diferentes

para encontrar uma caracterização na performance psicomotora.

2.2 Dataset

Para progredir com nosso projeto, escolheu-se usar os dados já coletados para poder

trabalhar com os sinais EMG e EEG [3]. Os dados referem-se a um experimento cujo

o objetivo foi fornecer dados para a melhoria da comunicação entre usuários e interface

cérebro computador (BCI).

O experimento, que envolveu 25 participantes realizando 11 diferentes pares de mo-

vimentos e movimentos imaginários de membros superior durante 3 dias, resultou em um

enorme banco de dados - tanto não processados quanto processados - de sinais sEMG e

EEG. Os movimentos são separados em 3 classes: arm-reaching, hand-grasping e wrist-

twisting, representados na Figura 3. Cada movimentação segue um protocolo de descanso,

aviso visual do próximo movimento e realização do movimento ou movimento imaginário

- seguindo o padrão temporal de 4 segundos, 3 segundos e 4 segundos, respectivamente,

como visto na Figura 4.

Para a coleta de dados, foram utilizados 7 canais de sinais sEMG - envolvendo 6

diferentes músculos do braço (extensor ulnar do carpo, extensor dos dedos, flexor do

carpo radial, flexor ulnar do carpo, b́ıceps braquial e tŕıceps braquial) e o cotovelo como

sinal de referência, e 60 canais de sinais EEG, além de mais 4 canais de sinais de eletro-

oculografia (EOG) para eliminar sinais falsos de EEG. A montagem dos eletrodos pode ser

observada na Figura 5. Todos sinais foram capturados em uma frequência de 2500Hz, com

um filtro de 60Hz. A qualidade dos dados dos sinais obtidos foram validados comparando

a acurácia dos dados obtidos com a classificação de performance de BCI.
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Figura 3: Classes dos movimentos analisados para a formação do banco de dados extráıdo
de [3].

Figura 4: Parâmetros de movimentação do membro superior para a coleta dos dados de
EMG e EEG extráıdo de [3].

Figura 5: Posição dos eletrodos nos voluntários extráıdo de [3].
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2.3 Análise de sinais EMG

A partir do sinal de EMG obtido, é posśıvel identificar o ińıcio do movimento (ON-

SET) realizado e o seu fim (OFFSET) no domı́nio do tempo. Existem, entretanto, algumas

dificuldades de identificação, como por exemplo rúıdos externos e distorções provocadas

internamente, como o batimento card́ıaco. Embora alguns especialistas consigam identifi-

car visualmente apenas observando o sinal, existem também alguns métodos matemáticos

que possam ajudar.

2.3.1 Detecção de Onset

Com o objetivo de trabalhar com os dados EMG coletados, deve-se compreender a

detecção da ativação dos músculos - ONSET/OFFSET de cada sinal. É fato que o método

mais acurado e preciso de detecção ONSET/OFFSET é o visual, porém é necessário uma

pessoa especializada para tal método. Foi proposto em [4] um método mais simples e

sem necessidade de um profissional ou um processo de treinamento anterior. Tal método

foi aplicado em cima dos dados de sinais EMG coletados do movimento de abrir e fechar

da mão. O método consiste em calcular o valor médio absoluto em janelas; utilizar um

threshold baseado na taxa constante de alarme falso; e processar com o algoritmo de

morphological hole filling. Comparou-se o resultado de tempos de ONSET/OFFSET com

um sinal referência a partir de um giroscópio colocado no dedo médio, e com mais dois

métodos regularmente usados: extended double threshold method (eDTM) e novel double

threshold algorithm (nDTA). Os tempos de ONSET e OFFSET do método proposto ficou

mais próximo da referência do que os métodos usuais de detecção, como visto na Figura

6, comprovando assim a eficácia do método proposto.

Figura 6: Comparação entre o algoritmo proposto com demais métodos [4].
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O método de extended double threshold algorithm (eDTA) foi apresentado em [5].

Esse método apresenta uma maneira diferente de otimização de parâmetros para obter os

thresholds. A principal diferença na seleção é a utilização de parâmetros não globais para

a seleção do threshold, mas sim baseado em parâmetros obtidos por meio da realização de

uma média móvel. O processo feito foi comparado com uma analise obtida de especialistas

e apresentou uma boa concordância nos dados.

O método do eDTA é divido em sete partes, com a sétima etapa sendo usada para

o caso de movimentos que possuam duas componentes e seja desejado obter os ONSET

e OFFSET do conjunto como um todo. As seis etapas obrigatórias são: Baseline Detec-

tion; First threshold using baseline parameters; Second threshold using on time; Third

threshold using off time; Prune short events; Prune non-typical bursts. Para cada um

das etapas é necessário fornecer alguns valores de entrada, além dos dados de EMG, que

servem para controlar as caracteŕısticas dos threshold. Pode-se observar na Figura 7

exemplos da detecção e eficiência do algoritmo utilizado no sinal de EMG.

Figura 7: Exemplo de um burst curto e um burst não t́ıpico, extraido de [5]

No trabalho [17] foi apresentado o método novel double threshold algorithm (nDTA).

O método nDTA é similar ao método tradicional de double threshold, mas tem como

diferencial a seleção dos parâmetros de detecção antes e durante os testes. Os métodos

tradicionais de double threshold utilizam dados médios de testes para obter os valores

de threshold do sinal de EMG para detecção de ONSET e OFFSET, entretanto para

sinais onde o signal to noise ratio, razão de sinal para rúıdo, (SNR) é variável, a detecção

de ONSET e OFFSET pode ser prejudicada. Desse modo o nDTA propõe que a cada

detecção de burst de sinal, seja feita uma reavaliação do SNR e dos valores de threshold.

Ao final, foi comparado os resultados de detecção do método clássico com o nDTA, e foi

observado uma melhora considerável para casos de SNR variáveis.
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2.3.2 Classificação de movimento

Além da informação de ińıcio de movimento, pode-se também extrair do sinal de

EMG informações capazes de construir um classificador de movimento, partindo do con-

ceito de aprendizado de máquina. O processo de classificação do sinal pode ser resumido

em 3 etapas (no aprendizado supervisionado) ou 4 etapas (no aprendizado não super-

visionado) [18]. A primeira etapa é segmentar os sinais que representam o movimento

realizado em janelas, adjacentes ou sobrepostas. Em seguida, são extráıdas de cada janela

caracteŕısticas (features) que vão ser os indicadores do classificador. Essas caracteŕısticas

podem ser escolhidas dependendo do domı́nio trabalhado: tempo, frequência ou tempo e

frequência. No domı́nio do tempo, as caracteŕısticas mais comuns são as de valor médio

absoluto e a raiz média quadrada. É recomendado antes de extrair as caracteŕısticas

que o sinal já esteja processado, uma vez que o sinal bruto pode ter baixa eficiência na

classificação [19].

No caso em que o aprendizado de máquina seja não-supervisionado, deve-se aplicar

uma clusterização nos dados obtidos, para poder identificar os grupos. A etapa final então

é fazer o treino do classificador e o seu teste, com base de sinal diferente, para avaliar

a eficiência do classificador. A entrada do classificador são as caracteŕısticas extráıdas

do sinal e a sáıda a classe do movimento. Existem vários tipos sistemas de classificado-

res, sendo o mais comum e mais simples o Linear Discrimination Analysis (LDA). Para

evitar sobrecarregar o classificador, pode-se optar por utilizar um método de redutor de

dimensão, como o Principal Component Analysis (PCA) [19].

2.4 Análise de sinais EEG

Outro método de detecção de movimento é a observação de Event-Related Desyn-

choronization (ERD) e Event-Related Synchronization (ERS) a partir dos sinais de EEG.

Esses dois padrões do sinal são considerados a indicar a ativação da parte do cortex motor

durante planejamento, execução e finalização do movimento. Ambos eventos podem ser

interpretados no domı́nio do tempo [20]. Portanto, ERD e ERS são aspectos confiáveis

para a identificação do movimento no tempo.
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2.4.1 Identificação do ERD/ERS

Event-related desynchronization e event-related synchronization são fenômenos cau-

sados a partir de mudanças, decremento ou incremento, da sincronização de atividade

neural. Esses dois fenômenos refletem mudanças no comportamento da frequência do

sinal EEG, que indicam a inicialização (dessincronização) e finalização (sincronização) de

algum movimento ou intenção de movimento do ser humano. Para medir tais fenômenos,

é utilizado a relação entre potência do sinal EEG dentro das bandas de frequência e a

potência base do mesmo na mesma banda de frequência, gravado antes do evento acon-

tecer. Assim, ERD e ERS representam porcentagens de incremento ou decremento de

potência do sinal.

O método segue as seguintes etapas: filtro passa-banda de todos os eventos (movi-

mentos do voluntário); obter a potência da amplitude dos sinais e calcular a variância de

ponto a ponto; obter uma média móvel entre essas potências [21].

É relevado no artigo que a atividade de movimento ativa o fenômeno de ERD na banda

alpha de frequência, ativando dois padrões diferentes de dessincronização. Na faixa de 7 a

10Hz (Lower alpha desynchronization) é obtido a partir de qualquer tipo de atividade, já

na faixa de 10 a 12Hz (Upper alpha desynchronization) é obtido a partir de processamento

de informação semântica-sensorial. Movimentos voluntários resultam dessincronização na

lower alpha band e upper alpha band, aproximadamente 2 segundos antes do ONSET do

movimento.

O trabalho de [22] busca encontrar uma relação entre habilidades cognitivas e con-

vulsões pouco frequentes em crianças com epilepsia focal não sintomáticas. Para o tra-

balho foram estudados 6 crianças com epilepsia e 11 crianças sem a doença, usadas como

grupo de controle. O experimento obteve dados de EEG em 4 faixas de frequência de inte-

resse (4-6 Hz, 6-8 Hz, 8-10 Hz e 10-12 Hz) durante tarefas de memória auditiva. Em cada

um das faixas de frequências o sinal foi elevado ao quadrado e suavizado por uma media

móvel. Para obter as taxas do sinal, tanto de ERD quanto ERS, foi utilizado uma janela

de 1,5 segundos da posição de descanso como sinal de referência e a taxa foi calculada

aplicando 100% x (energia durante referência - energia durante experimento)/(energia

durante referência). O estudo concluiu que as diferenças na faixa de baixa frequência

(4-8 Hz) nas crianças com epilepsia, quando comparados com pessoas saldáveis da mesma

faixa etária, podem indicar que as convulsões afetem a memória.
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2.5 Coerência de sinais

A coerência dos sinais de EMG e EEG não só avaliam a relação entre os sinais, como

podem também indicar diferenças entre pessoas saudáveis e pessoas com alguma doença

neurológica. O sinal de EEG e EMG possuem magnitudes e comportamentos distintos,

trazendo variações nos resultados dependendo das condições dos trabalhos.

No artigo [23] pode-se entender melhor os processos para o cálculo desse dado es-

tat́ıstico. Para investigar de melhor forma a atividade do sistema nervoso central de

pacientes de com distonia focal na mão (FHD), é utilizado a métrica de CMC para com-

parar os resultados de uma pessoa saudável e uma portador da doença. O experimento

realizado foi o descanso da mão tanto para o voluntário saudável quanto para o portador

de FHD. Os dados foram coletados à 1kHz, e no pré-processamento foi usado um filtro

de 4Hz 45Hz para o EEG e 50Hz 350Hz para o EMG.

Observou-se então nos resultados que os picos acima do ńıvel de confiança que mais

se destacaram foram ao redor das frequências de 5Hz 20Hz (banda de frequência α e β),

enquanto nos pacientes com FHD houve picos também na região de maior frequência.

Os valores obtidos de CMC são afetados por múltiplos fatores, como a magnitude

da força do sujeito e o tipo (estático ou dinâmico), a saúde, o design do experimento

(movimento e músculos), a idade e as bandas de frequência [24].Na maioria dos casos,

entretanto, é melhor observado picos do valor de coerência acima do ńıvel de confiança

para frequências de banda β, especialmente entre 13Hz 21Hz e 21Hz 30Hz [25]. Um

exemplo dado nos artigos é a doença de Parkinson, onde os valores de coerência podem

ser observados na região de 4 6Hz e 8 12Hz.
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Figura 8: Passo a passo do método utilizado para calcular a coerência [6]

O trabalho [6] teve como meta melhorar a coerência entre os sinais de EEG e sEMG,

antes baseada na transformada de Fourier (considerando o sinal como estacionário). Como

o sinal do EEG é muito mais fraco que o EMG, a coerência entre eles é baixa. Para isso é

proposto um algoritmo para o pré-processamento do sinal EEG a partir de parte do EMG

mais significante e, assim, a coerência do sinal EEG pré-processado e o sinal EMG são

analisados pela wavelet coherence (Figura 8). O experimento foi aplicado aos movimentos

gerados pela mão, porém analisando os movimentos de abrir e fechar da mão e o torcer do

pulso. Os dados foram obtidos com uma frequência de amostragem de 512Hz, os eletrodos

posicionados nos músculos do pulso direito e o canal de EEG utilizado para a coerência

foi o C3, eletrodo central principal do lado esquerdo. Os resultados indicam que esse

algoritmo consegue melhorar a coerência entre os sinais EEG-EMG, comparados com os

resultados obtidos de Magnitude Squared Cohenrence (MSC) ou CMC. Além disso, dos

resultados pode-se extrair diferentes valores de coerência para diferentes músculos e movi-

mentos, podendo levar a uma futura classificação de movimentos a partir das coerências.

Deve-se notar que experimento está limitado para parâmetros espećıficos, sinais EEG e

EMG de mesma frequência e pessoas saudáveis.
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3 OBJETIVO

O principal objetivo do projeto é a criação de um sistema de software responsável por

detectar a intenção e inicialização do movimento, a partir dos sinais de EEG e EMG, e

identificar a relação temporal entre as duas. Espera-se que a adequação temporal entre

a intenção do usuário e a ação do exoesqueleto contribua para melhorar a sensação de

controle do usuário sobre o dispositivo.

O objetivo principal pode-se então ser divido em 3 partes: detecção de movimento dos

sinais EMG; detecção de intenção de movimento dos sinais EEG; correlação dos ińıcios de

movimento de cada resultado obtido e análise da coerência entre os dois sinais diferentes.

Para a detecção do movimento do sinal EMG, o foco é sobre a identificação do ONSET

e do OFFSET no sinal, ou seja, a identificação do começo e fim do movimento a partir

do sinal. Já no sinal de EEG, o propósito é analisar os event-related desynchronization

(ERD), evento relacionado à inicialização da intenção do movimento. Após obter as duas

primeiras partes do objetivos, será então feita a correlação temporal e aplicar conceitos

de coerência entre os sinais para encontrar as bandas de frequência nas quais os sinais

possuem maior coerência.
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4 REQUISITOS

Para que os objetivos do projeto sejam alcançados, é necessário garantir que os

métodos de detecção sejam eficientes, tanto para os sinais de EMG quanto para os si-

nais de EEG. Somente a partir das detecções é que o programa será capaz de identificar

o tempo entre a intenção de movimento e a coerência dos sinais. O programa deve ser

responsável pela detecção e análise dos resultados, dentro da linguagem de programação

Python.

O algoritmo utilizado para detectar os ONSETs e OFFSETs de movimentos no sinal

de EMG deve ser capaz de detectar a maioria dos movimentos realizados em todo experi-

mento: quanto mais movimento forem detectados, melhor será a confiabilidade da relação

temporal e da coerência dos sinais. Além disso, o programa deve ser capaz de identificar

o ERD no sinal de EEG a partir dos movimentos encontrados, o tempo médio entre o

ERD e o ONSET e as bandas de frequência nas quais a coerência é relevante durante o

movimento. Assim, os requisitos do projeto podem ser resumidos na tabela 1.

Requisitos do projeto
1. Detecção da maioria dos movimentos dentro dos sinais de EMG da base de dados
2. Capacidade de identificar o ERD no sinal de EEG
3. Identificação do tempo médio entre o ERD e ONSET
4. Identificação das bandas de frequência de maior coerência entre os sinais de EMG
e EEG durante o movimento

Tabela 1: Requisitos do projeto
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5 EMBASAMENTO TEÓRICO

5.1 Eletromiografia e Eletroencefalografia

O EMG é um método de detecção e medição de sinais elétricos gerados pelos músculos

durante sua contração, representando atividade neuromuscular [26]. É posśıvel obter os

sinais de EMG de duas maneiras diferentes, eletrodos invasivos e não-invasivos. Os eletro-

dos invasivos consistem de agulhas que são inseridas diretamente no músculo, enquanto

eletrodos não-invasivos são colocados na superf́ıcie da pele.

EEG é um dos métodos de medição de atividade cerebral [27]. Os sinais medidos por

meio de EEG são sinais elétricos causados pela superposição e sincronização de ativida-

des neuronais do cérebro que são captadas por meio de eletrodos posicionados no couro

cabeludo. A medição de sinais de EEG ocorre com a utilização de eletrodos especifica-

mente colocados em pontos cruciais pelo couro cabeludo, capazes de identificar atividade

cerebral consequentes da ativação muscular.

5.2 Pré-processamento

Ao captar os sinais de EEG e EMG geralmente é captado diversos artefatos indeseja-

dos. Dentre os artefatos os mais comuns e conhecidos são a interferência da rede elétrica,

o movimento dos olhos e de piscar. Por isso é necessário realizar um pré-processamento

no sinal obtido. É utilizado um filtro do tipo notch para remover a interferência da rede

elétrica. Outro motivo para o pré-processamento é um filtragem do tipo passa-banda, com

o intuito de obter apenas as faixas de frequência de interesse para o estudo em questão.

Os limites do filtro variam para sinais de EEG e EMG.

O método mais utilizado para realizar o pré-processamento de dados é utilizando filtro

de Butterworth. Uma das caracteŕısticas desse filtro é que ele apresenta um ganho mais

uniforme, sem ondulações, para as regiões da banda passante. É muito comum utilizar

filtros de ordem bastante elevadas, quarta à oitava ordem, pois o filtro de Butterworth
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mantém o mesmo formato para ordens elevadas, apenas reduzindo a variação do ganho

na região da banda rejeitada.

5.3 ONSET/OFFSET

ONSET e OFFSET são os instantes de tempo em que ocorrem, respectivamente,

o inicio da ativação muscular e o término da ativação muscular. Entretanto como os

sinais do corpo humano não são do tipo binário, ativado ou desativado, esses instantes

são obtidos com base em threshold de valores. Portanto, a análise de identificação dos

ONSETs e OFFSETs não são sempre de exata precisão, e deve-se utilizar um algoritmo

para detectá-los no sinal de EMG, evitando rúıdos externos como picos de movimentos

indesejados ou falhas na hora de captação.

Entre os algoritmos de detecção de ONSET e OFFSET, o extended double threshold

algorithm (eDTA) apresenta resultados próximos aos identificados por profissionais [5].

O eDTA é composto por 7 etapas, nas quais são necessárias fornecer alguns valores de

entrada com intuito de controlar as caracteŕısticas dos thresholds. Esses valores são :

Tamanho do segmento de baseline (Lb); O rank da média móvel para seleção do segmento

de baseline (Kthb); Número de desvios padrões do segmento de baseline (Nsd); Tempo,

em segundos, para detecção de um ONSET (Ton); Tempo, em segundos, para detecção de

um OFSET (Toff ); Tempo, em segundos, para o menor tamanho de um burst de sEMG

(Ts); Número de desvios padrões do valor quadrático médio dos burst de sEMG (Nnt);

Tempo, em segundos, para o tempo máximo em que dois burst de sEMG estão separados

para serem considerados apenas um burst de sEMG (Tj).

A primeira etapa é a baseline detection, um procedimento para se obter parâmetros

iniciais que serão utilizados durante o primeiro threshold. Nessa etapa o sinal de sEMG já

pré-processado é retificado e então é passado uma média móvel de tamanho Lb segundos.

Com os dados da média móvel é selecionado o KtH
b menor valor obtido como sendo o

segmento de baseline. Com o segmento selecionado é calculado sua média e seu desvio

padrão.

O primeiro threshold é obtido utilizando o dados original de sEMG, sem ser retificado,

e os valores da média e desvio padrão obtidos anterioremente. Essa etapa consiste em

selecionar todos os dados que possuem um valor superior à média somada aNsd números de

desvio padrões e criar uma nova lista de dados substituindo por 1 onde os valores de sEMG

ultrapassam o baseline e 0 onde não ultrapassam. Com isso obtemos diversos pontos de
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posśıvel ativação muscular durante o sEMG. O segundo threshold utiliza os dados obtidos

do primeiro threshold para obter uma primeira versão dos pontos de ONSET e OFFSET.

Esse processo consiste em verificar todos os valores que ultrapassaram o valor do primeiro

threshold e considerar a existência de um par ONSET e OFFSET quando se existe uma

sequência de 1’s com duração superior a Ton segundos. Esse segundo threshold é capaz

de remover vários falsos positivos gerados pelo primeiro threshold.

O terceiro threshold utiliza os valores dos ONSET e OFFSET obtidos anteriormente

para unificar ONSET’s que estejam separados por menos de Toff segundos. Desse modo

unimos pontos que fazem parte de um burst de sEMG mas cujo valor medido era menor

que o primeiro threshold. O quarto threshold remove pares de ONSET e OFFSET que

possuem duração menor que Ts segundos. Essa operação é realizada para permitir uma

maior sensibilidade do Ton do algoŕıtimo. Por fim removemos burst que possuem um

tempo de duração relativamente elevado, mas cuja amplitude é baixa. A maneira para

se efetuar essa remoção é obtendo os valores médios quadráticos para cada conjunto de

ONSET e OFFSET, obter a média e desvio padrão dos valores médios quadráticos e

considerar apenas os sinais que possuem uma média quadrática superior à media somada

a Nnt desvios padrões. Podemos observar na Figura 7 dois tipos de situação que são

removidas durante os dois últimos thresholds. Na esquerda vemos um burst de curta

duração que havia sido considerado nas etapas anteriores, mas que foi removido durante

o quarto threshold, e na direita vemos um burst de duração considerada pelo algoŕıtimo,

mas cuja amplitude não condizia com os outros bursts.

5.4 ERD

O ERD (Event-Related desynchronization) é uma queda na energia no sinal de EEG

em determinada frequência. Este fenômeno junto ao ERS (Event-Related Synchroniza-

tion) fazem parte dos ERPs (Event-Related Potencials), que são mudanças na atividade

cerebral através de algum tipo de evento [20]. Em um sinal de EEG a partir de uma pes-

soal saudável, o ERD indica a ativação do córtex motor durante o planejamento de algum

movimento, enquanto o ERS indica a recuperação das atividades neurais consequentes,

ambos relacionados no domı́nio do tempo com o evento. O ERD e ERS, além de trazer

essa informação, podem ser utilizados para identificar anomalias das atividades neurais

causadas por doenças como Parkinson, com comportamentos diferentes em certas regiões

de frequência.

Para identificar o ERD no sinal de EEG, é necessário realizar 3 etapas: filtrar o sinal



28

EEG para as bandas de frequências relacionadas ao evento, sendo a banda alpha a mais

significante; elevar ao quadrado as amplitudes do sinal para obter a potência; obter a

média das potências entre todos os segmentos de movimento.

5.5 Coerência entre os sinais

A coerência é uma análise para relacionar dois sinais no domı́nio da frequência. O

cálculo desse dado estat́ıstico parte da densidade de potência espectral (PSD), e o seu

valor varia entre 0 e 1.

No contexto dos sinais de EEG e EMG, existe a Coerência Corticomuscular (CMC),

com objetivo de estudar as conexões funcionais e interações das atividades do córtex

cerebral e a atividade do músculo. [24] Além disso, o CMC pode contribuir no ambiente

médico, como indicador de doenças neurógicas ou sinais de recuperação de derrames, e no

ramo de pesquisa de robôs biomédicos, próteses e reabilitação [25]. A fórmula do CMC

é dada na fórmula 5.1, onde Px(f) e Py(f) são as densidades de potência espectrais de

cada sinal, e Pxy 5.2 o valor da densidade de potência espectrais cruzados (CPSD). Para

avaliar a confiabilidade dos resultados obtidos, é calculado um ńıvel de confiança (CL),

dada a fórmula 5.3, onde α é a porcentagem de confiança e N o número de segmentos

usados para estimar a coerência.

Cohxy(f) =
Pxy(f)√

|Px(f)| ·
√
|Py(f)|

(5.1)

Pxy(f) =
1

n

n∑
i=1

Xi(f)Y
∗
i (f) (5.2)

CL = 1− (1− α)(
1

N − 1
) (5.3)

Mesmo sendo um método comum e comprovado para as análises relacionais de córtex

e músculo, os resultados obtidos de coerência e banda de frequência dentro CMC podem

variar bastante, uma vez que o sistema neural é extremamente complexo e pode depen-

der das condições da pesquisa em si: movimento realizado, idade dos voluntários e suas

saúdes.
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6 METODOLOGIA

6.1 Coleta de dados e pré-processamento - sinais EMG

e EEG

Os dados dos sinais de EMG e EEG serão coletados de uma base de dados originada a

partir de um experimento de movimento do membro superior. Os voluntários obedeceram

a uma ordem de três classes movimentos distintos, com 50 repetições de cada movimento

dentro da classe, durante três sessões. Os eletrodos foram posicionados na cabeça, para os

sinais EEG, e nos músculos do membro superior, para os sinais EMG. A captura dos dados

foi feita dentro de uma frequência f = 2500Hz [3]. Pode-se encontrar mais informações

dos dados coletados na sessão 2.2 .

Para ser posśıvel utilizar os dados de EMG posteriormente, será realizada uma série de

processamento nos dados. As etapas do pré-processamento podem ser vistas nas Figura

9 e Figura 10, onde a segunda imagem apresenta uma visão mais aproximada do sinal. O

primeiro gráfico é o sinal original como obtido da base de dados. Nesse sinal é aplicado

um filtro Butterworth passa-banda de quarta ordem de fase zero, dentro da faixa de

frequência de 10Hz a 490Hz, a faixa de frequência relativa à parte motora. O sinal após

o filtro pode ser observado no segundo gráfico. O próximo passo é realizar uma retificação

de dados, uma vez que para a detecção de ativação muscular é mais importante o valor

absoluto do sinal.
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Figura 9: Etapas de pré-processamento do sinal de EMG.

Figura 10: Detalhamento do pré-processamento do sinal de EMG

Como os dados obtidos da base de dados são extensos, aproximadamente 1 hora de

duração gravadas em uma frequência de amostragem de 2500Hz em 6 canais diferentes,

realizar a detecção de ONSET e OFFSET em todos os dados seria uma tarefa que ne-

cessitaria de um grande poder computacional e demoraria muito tempo. Para reduzir o

tamanho dos dados decidiu-se realizar uma redução de frequência nos dados. Para isso

foi aplicado um novo filtro Butterworth passa baixa de quarta ordem de fase zero com

frequência de corte de 30Hz. Esse filtro é suficiente para obter as ativações musculares,
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que são repetidas a cada 11 segundos e tem duração de 4 segundos. Por fim foi feito uma

redução de amostragem para reduzir a frequência do sinal de 2500Hz para 100Hz.

De maneira similar os dados de EEG também deverão ser pré-processados para po-

derem ser usados posteriormente. Entretanto como são necessários uma quantidade bem

menor de dados de EEG para a análise do ERD, uma vez que são utilizados apenas trechos

do sinal ao redor do ińıcio do movimento, não é necessário realizar nenhuma mudança de

frequência e nem retificação. Desse modo o único pré-processamento efetuado é um filtro

no sinal de EEG extráıdo do banco de dados. O fltro utilizado é um Butterworth passa

banda de quarta ordem de fase zero nas frequências entre 8Hz e 12Hz, como mostrado

nas Figura 11 e Figura 12.

Figura 11: Etapas de pré-processamento do sinal de EEG.
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Figura 12: Detalhamento do pré-processamento do sinal de EEG

6.2 Detecção de ONSET e Offset do sinal de EMG e

classificação do movimento

A partir dos dados de EMG pre-processados, será utilizado o algoritmo de extended

Double Threshold Algorithm(eDTA) [5] para encontrar os pontos de ONSET e OFFSET

do movimento. Com base nos códigos em matlab apresentados no artigo, o algoritmo,

junto com suas respectivas funções e leituras de dados, será replicado no ambiente de

programação Python. Assim, a partir dos dados pré-processados anteriormente, será

posśıvel encontrar o momento em que houve um ińıcio na atividade motora, representando

um começo de movimento. O funcionamento do algoritmo pode ser observado nas Figura

13 e Figura 14, sendo a última uma versão focada da primeira.

O algoritmo tem como primeira etapa o cálculo da média e desvio e padrão de um

segmento de dado considerado inativo. A duração do segmento de dado é fornecido ao

código e pode ser modificado dependendo do experimento. O segundo passo é identificar

quais sequencias de ativação muscular, obtidos anteriormente, possuem duração superior a

um determinado threshold, definido pelo usuário. Desse modo obtém-se pares de ONSET

e OFFSET, onde se inicia e termina uma ativação muscular. O próximo passo é unir pares

que estejam distanciados por uma duração inferior a um threshold, também definido pelo

usuário. Essa etapa serve para unir ativações musculares de um mesmo movimento, mas

que o algoritmo considerou como dois movimentos. O quarto passo é remover pares
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com duração inferior a um threshold de duração, controlado pelo usuário. Desse modo

se retira qualquer posśıvel espasmo muscular detectado que não pode ser considerado

um movimento. Com os pares obtidos até o momento é calculado a média e o desvio

padrão a partir da raiz do quadrado médio (RMS) do sinal entre os momentos de ativação

muscular, e assim são removidos os conjuntos de dados que possuam sua RMS fora da

faixa de mais ou menos a soma da média com o desvio padrão multiplicado por um

threshold selecionado. Por fim, aplica-se uma lógica similar à terceira etapa, mas agora

com um tempo relativamente maior, e junta-se qualquer conjunto de ativação de um

mesmo movimento que estavam separadas.

Figura 13: Etapas de obtenção de ONSET
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Figura 14: Etapas de obtenção de ONSET (focado)

Pela aplicação do eDTA obtém-se 6 conjuntos de ONSETs e OFFSETs, um para cada

canal de EMG. Para reunir esses conjuntos em apenas um, realiza-se mais duas etapas

de processamento. A primeira consiste em considerar uma ativação muscular apenas os

instantes de tempo onde houve ativação em mais de N canais simultâneos, onde N é

definido na utilização do código. Por fim, considera-se para os dados do experimento

utilizado que qualquer ativação muscular com duração superior a 6 segundos ou inferior a

2 segundos poderia ser descartada para análise, uma vez que o movimento do experimento

tem duração de 4 segundos e ativações muito maiores ou menores podem ser consideradas

de detecção ruim para análise.

6.3 Identificação do ERD do sinal de EEG

O próximo passo é aproveitar dos sinais EEG. Baseado nas pesquisas de colegas de

doutorando e iniciações cient́ıficas, adotou-se o método de identificar o Event Related

Desynchronization (ERD) para avaliar as detecções de movimento. Esse também será

adaptado para o ambiente de programação escolhido.

Para visualizar o ERD será utilizado os dados de ONSET obtidos anteriormente para

obter os momentos de ińıcio de movimento. O primeiro passo é passar os dados de EEG

por um filtro Butterworth passa-banda de quarta ordem de fase zero, dentro da faixa de

frequência de 8Hz a 12Hz, que é a principal faixa de frequência para se obter o ERD

(banda α de frequência). A partir dos instantes de ińıcio de movimento, utiliza-se os
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Figura 15: Processo de identificação do intervalo de tempo entre a intenção e inicialização
do movimento

dados de EEG em um intervalo de -3s a 4s do ONSET. Desse modo é obtido a completa

duração do movimento efetuado e uma duração anterior ao mesmo, onde pode se detectar

o ERD. O próximo passo é obter a relação de energia do sinal nos instantes de interesse,

e para isso eleva-se o sinal ao quadrado. Por fim aplica-se uma média móvel no sinal

resultante para suavizar o sinal.

Como o sinal de EEG apresenta muito rúıdo, tanto de outras ativações cerebrais não

relacionadas ao movimento, quanto de dificuldades em obter o sinal do cérebro através do

cranio, a média de várias amostras de movimento é calculada com intuito de remover esse

rúıdo. Finalmente, obtém-se a relação temporal do ERD e o ONSET, como mostrado na

Figura ??.

6.4 Coerência dos sinais

Para finalizar o trabalho apresentado, será realizado o cálculo da coerência dos sinais

EMG e EEG. Existe uma vasta literatura que aborda estudos da relação entre o EMG e o

EEG, sendo a coerência um dos métodos mais comuns. A partir dos resultados observados

no estado da arte, sabe-se que, no geral, valores de coerência corticomuscular resultam

em picos na região de frequências entre a região α e o ińıcio da γ (7-50Hz). O intuito

da análise do CMC (5.1) neste trabalho é não só certificar que os sinais estão coerentes

entre si, apresentando valores altos relativos na região esperada, como também observar

comportamentos diferentes relacionados ao design deste experimento.
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O estudo da coerência dos sinais será realizado em três etapas: pré-processamento,

amostragem dos sinais e cálculo e plotagem da coerência para as regiões de frequência. Na

primeira parte, com base nos estudos já realizados, os sinais de EEG e EMG são filtrados

em um filtro de passa-banda semelhante ao utilizado na detecção de ONSET do EMG e

na detecção de ERD no EEG, porém com frequências que abrangem a região de interesse.

Para o sinal de EMG, a banda de frequência escolhida foi de 13-100Hz e para o EEG

8-30hz. É também realizado uma re-amostragem do sinal, de 2500Hz para 500Hz, devido

ao enorme quantidade de informação do sinal.

A coerência do sinal inteiro é ineficaz, pois pode apresentar excesso de informação

e picos de coerência em frequências fora do interesse. Assim, será analisado apenas nas

regiões de movimento. Para isso, utilizaremos novamente a informação coletada de tem-

pos de inicialização de movimento, a partir da detecção do ONSET, assim cortando em

sinais menores com informação essencial. Os 7 segundos utilizados como base para a

identificação do ERD também será considerado nesta parte de coerência.

Finalmente, como aux́ılio da biblioteca de análise de sinais do python utiliza-se as

funções de coerência ( scipy.signal.coherence ) e a função que plota o gráfico ( matplo-

tlib.pyplot.cohere ), que seguem o mesmo prinćıpio do cálculo de CMC. A função de janela

utilizada para o cálculo de coerência é a Hann, a mais comum. As configurações para a

função são as padrões, havendo sobreposição e tamanho da janela igual a 256. A função

logo retorna as magnitudes quadráticas de coerência dos finais, junto com as frequências

nas quais elas se estabelecem, em forma de array.

Como visto na literatura, o processo de cálculo de coerência pode variar em relação

aos filtros e parâmetros utilizados, portanto é importante notar que não há certeza na

melhor forma de se calcular a coerência, dado o design do experimento.
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7 RESULTADOS E DISCUSSÕES

Nessa seção será abordado os resultados obtidos. Será avaliado o método de detecção

de cada sinal individualmente e como eles se complementam.

7.1 Algoritmo de detecção de ONSET e OFFSET

Com base no programa de MATLAB apresentado em [5], replicou-se a lógica do pro-

grama no ambiente de programação Python. Com a utilização do algoŕıtimo de detecção

de ONSET e OFFSET, e os parâmetros apresentados na tabela 2 baseados em [5], foi

posśıvel obter duas listas com os instantes de tempo onde ocorrem, respectivamente, os

ONSETs e os OFFSETs do sinal.

Pode-se observar o resultado na Figura 16 e Figura 17. Cada gráfico representa um

dos seis sinais gravados de EMG, os pontos verdes são os instantes de ONSET, ińıcio da

ativação muscular, e os vermelhos são os OFFSETs, fim da ativação muscular, e a linha

que os une é a ativação muscular em si. Visualmente, pode-se observar que na Figura

16 existe um movimento que não foi detectado. Isso acontece em alguns casos no qual a

amplitude é muito menor em relação aos outros movimentos.

Parâmetros Valores utilizados

Lb 100

Kthb 5

Nsd 3

Ton 0.1

Toff 0.05

Ts 0.5

Nnt 1

Tj 100

Tabela 2: Parâmetros utilizados no algoritmo eDTA para detecção de ONSET e OFFSET
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sessão 1 sessão 2 sessão 3

Voluntário 1 218(73%) 55(18%) 150(50%)

Voluntário 2 245(82%) 248(83%) 249(83%)

Voluntário 3 112(37%) 91(30%) 154(51%)

Voluntário 4 238(79%) 260(87%) 258(86%)

Voluntário 5 168(56%) 217(72%) 235(78%)

Voluntário 6 277(92%) 0(0%) 274(91%)

Voluntário 7 205(68%) 210(70%) 73(24%)

Voluntário 8 68(23%) 56(19%) 235(78%)

Voluntário 9 0(0%) 0(0%) 69(23%)

Voluntário 10 256(85%) 25(8%) 25(8%)

Voluntário 11 231(77%) 245(82%) 214(71%)

Voluntário 12 191(64%) 284(95%) 241(80%)

Voluntário 13 253(84%) 249(83%) 0(0%)

Voluntário 14 0(0%) 116(39%) 84(28%)

Voluntário 15 204(68%) 26(9%) 7(2%)

Voluntário 16 96(32%) 77(26%) 0(0%)

Voluntário 17 190(63%) 90(30%) 0(0%)

Voluntário 18 233(78%) 0(0%) 258(86%)

Voluntário 19 286(95%) 275(92%) 256(85%)

Voluntário 20 252(84%) 234(78%) 180(60%)

Voluntário 21 6(2%) 0(0%) 271(90%)

Voluntário 22 275(92%) 212(71%) 0(0%)

Voluntário 23 235(78%) 244(81%) 217(72%)

Voluntário 24 285(95%) 283(94%) 26(9%)

Voluntário 25 193(64%) 230(77%) 263(88%)

Tabela 3: Taxa de detecção entre todos os sinais de EMG do experimento, em movimentos

detectados e porcentagem de detecção
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Figura 16: Resultado do algoritmo de ONSET e OFFSET no dado de EMG

Figura 17: Resultado do algoritmo de ONSET e OFFSET no dado de EMG (focado)

Com o uso do algoŕıtimo de detecção de ONSET e OFFSET foi posśıvel obter quase

que a totalidade dos movimentos realizados durante o experimento, com algumas exceções,

como visto na Tabela 3. O principal fator para não detectar algum movimento é o sinal

gravado ser muito fraco. Durante a execução dos códigos foi notado a grande sensibili-

dade dos parâmetros de detecção, pequenas alterações nos mesmos levam o algoŕıtimo de

detectar quase a totalidade dos movimentos para não detectar nenhum ou as vezes con-

siderar grandes partes de sinal, incluindo momentos de repouso, como ativação muscular
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de movimento.

A partir dos dados obtidos de ONSET e OFFSET, obteve-se os momentos teóricos

em que cada movimento foi realizado, tanto o seu ińıcio quanto o seu término. A partir

desses dados temporais, juntamente com o sinal de EMG, seria posśıvel tentar separar os

seis tipos diferente de movimentos em grupos, dado que o banco de dados escolhido não

possúı essa distinção em seus dados. Para esse agrupamento seriam utilizados os 6 canais

de EMG, uma vez que movimentos diferentes possuem ativação de músculos diferentes.

Entretanto ao analisar o sinal de EMG para cada um dos canais, que representam cada

um dos músculos, foi verificado que não era posśıvel distinguir os mesmos, como pode

ser observado nas Figura 18 e Figura 19. Na maior parte dos movimentos todos os sinais

apresentaram caracteŕısticas idênticas, sendo raramente distingúıveis cada um dos canais.

Com isso foi decidido por não realizar o agrupamento dos movimentos.

Figura 18: Caso mais frequente: sobreposição dos sinais de EMG dos 6 diferentes canais

praticamente idênticos
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Figura 19: Casos menos frequentes: movimento que indica atuação diferente entre os 6

canais

7.2 Identificação da intenção de movimento a partir

do sinal de EEG

Utilizando os instantes de ińıcio de movimento obtidos pelo algoŕıtimo de ONSET e

OFFSET foi obtido os sinais de ERD de todos os sinais. As Figura 20 e Figura 21 apre-

sentam os sinais obtidos. A primeira imagem mostra os sinais de ERD que apresentaram

um comportamento condizente com o observado na literatura, enquanto a segunda mostra

os sinais de ERD com um comportamento bem diferente.
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Figura 20: ERD de todos os sinais

Figura 21: ERD dos sinais que apresentam uma alta diferença do previsto

Os sinais da Figura 20 apresentam caracteŕısticas condizentes com o ERD, mas apre-

sentam uma considerável variação. A variação do sinal de ERD pode ser considerado, em

geral, como rúıdo, e por isso foi feita uma média de todos os sinais, que pode ser visto na

Figura 22. Feita a média, os rúıdos tendem a se anular, sobrando apenas o sinal de ERD

desejado.
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Figura 22: Média dos sinais de ERD

A partir da Fig 22 é posśıvel verificar que existe uma grande relação com a intenção

de movimento, com uma queda na energia do sinal de EMG, o que caracteriza o ERD.

Essa queda pode ser percebida fortemente por volta de 1 segundo antes da realização

do movimento. É posśıvel observar que após o ińıcio do movimento a energia do sinal

apresenta uma tendencia de subida. Mesmo com esse resultado positivo, o uso do EEG

para obter um posśıvel ińıcio de movimento ainda é extremamente dif́ıcil. Como visto nas

Figura 20 e Figura 21 o sinal apresenta muita variabilidade. É posśıvel atribuir essa grande

variabilidade com a complexidade do sinal de EEG, uma vez que eles são obtidos a partir

de eletrodos posicionados cabeça. Por conta disso o sinal obtido é de baixa intensidade e

sujeito a interferência de outros sinais indesejados de outras regiões do cérebro.

7.3 Coerência

Os resultados da coerência entre os sinais e EEG e EMG obtidos pela fórmula de

CMC 5.1, não foram consistentes entre os movimentos. Dentre a vasta coleção de dados

de movimentos, escolheu-se a os sinais de EEG e EMG do sujeito 4, sessão 1 para mostrar

os resultados singulares. O canal escolhido de EMG foi o ligado ao músculo do b́ıceps.

As Figuras 23 e 24 são exemplos de resultados dos movimentos. Pode-se observar que

ao mesmo tempo em que alguns movimentos apresentam os valores de pico de coerência

na região esperada (13-30Hz), outros possuem comportamento inesperado. A grande

variância do valor de coerência entre os movimentos pode ser explicado pela sensibilidade
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do sinal de EEG e seu comportamento complexo.

Para obter um resultado mais sólido ao longo de todos os movimentos da sessão de

dados, realizou o cálculo de CMC a partir da média dos dados de EEG e EMG na região

dos movimentos, após eles serem tratados. A Figura 25 demonstra o comportamento

obtido.

Figura 23: Resultado da análise de coerência dos sinais de EEG e EMG em uma região

de movimento, a partir dos dados coletados do voluntário 4 sessão 1
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Figura 24: Resultado inesperados da análise de coerência dos sinais de EEG e EMG em

uma região de movimento, a partir dos dados coletados do voluntário 4 sessão 1

Figura 25: Resultado da análise de coerência da média dos sinais de EEG e EMG pré-

processados, na região onde o movimento é realizado, a partir dos dados coletados do

voluntário 4 sessão 1

Pode-se observar que os picos na região de banda de frequência β são viśıveis, porém
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junto com outras peculiaridades. A Figura 26 representa um aprofundamento nas médias

entre os demais sessões de coletas de dados, além de uma comparação entre os diferentes

canais de EMG.

Figura 26: Resultado da análise de coerência da média dos sinais de EEG e EMG pré-

processados, na região onde o movimento é realizado, a partir de todos os dados coletados

Como visto em pesquisas anteriores, o resultado de CMC pode ser afetado por di-

versos fatores, como saúde, idade, movimento, força, tratamento de dados e bandas de

frequências. Os voluntários do experimento do dataset são apresentados como saudáveis

e não possuem grandes diferenças de idade e todos eles são destros. Porém o design do ex-

perimento constitui em movimentos que não exercem força considerável. Além disso, um

posśıvel fator que possa ter influência nos resultados é a grande repetição dos movimentos

durante a sessão de coleta de dados, podendo afetar os sinais obtidos de EEG. A escolha

dos filtros para pré-processamento e bandas de frequência também são responsáveis pelo

comportamento observado. Outros testes foram feitos com bandas de frequências diferen-

tes, mas para a análise das regiões principais, as frequências escolhidas foram suficientes.

Mesmo assim, ainda foi posśıvel identificar altos ńıveis relativos de coerência nas

regiões desejadas, com algumas observações de picos na região de 50Hz e 5Hz. O resul-

tado é suficiente para ter uma validação das coerências entre EEG e EMG no desgin do

experimento.
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8 CONCLUSÃO

Ao final deste trabalho pode-se concluir que o algoritmo utilizado para a detecção de

intenção de movimento a partir do EEG e o ińıcio do movimento em si a partir do sinal

de EMG é valido mesmo para um experimento de coleta de dados extenso e com grande

resolução. O algoritmo para a detecção de onset e offset apresenta parâmetros senśıveis,

que podem variar entre sinais de EMG e movimentos. Dos resultados da aplicação do

algoritmo em todos sinais de EMG do experimento, utilizando os mesmos parâmetros de

entrada, o algoritmo foi capaz de analisar 65 de 75 amostras de sinais, obtendo uma média

de 62% de detecção entre todos os movimentos.

Individualmente, os dados podem apresentar variâncias por causa da complexidade

do sinal de EEG, uma vez que sua captação envolve algumas sobreposições de sinais de

outras regiões do cérebro. Pode-se, entretanto, assumir a média entre os movimentos a fim

de identificar a variação de energia, separar os outliers e calcular o ERD do sinal de EEG,

obtendo um valor adequado. A partir do ERD, representando a intenção do movimento,

e do ONSET do ińıcio do movimento, obteve-se o intervalo de 1 segundo entre os dois.

É notável que este trabalho pode contribuir para futuros trabalhos dentro do assunto

de sinais EEG e EMG. Com a informação temporal da intenção e a execução de movimento

extráıda de um banco de dados extenso, a criação de um sistema de controle para o uso

em um exoesqueleto se torna mais aproximável. Existe a possibilidade de obter tempos

diferentes de acordo com a saúde do paciente, idade e movimento espećıfico, porém com

o algoritmo proposto e utilizado no trabalho se torna mais confiável a detecção desse

tempo. Além disso, a partir da coerência, sabe-se como se correlaciona os sinais dentro

do design do experimento. Assim, se torna mais rápido a detecção de anomalias que

podem ser relacionadas à doenças neurológicas. É posśıvel assumir também que existe

uma diferença entre as coerências de movimentos diferentes, mostrando a possibilidade

de extrair uma classificação de movimentos a partir desses sinais EEG e EMG. Porém

deve-se tomar cuidado com o posicionamento dos eletrodos responsáveis pelo sinal EMG

e a complexidade de movimentação uma vez que no dataset trabalhado, os sinais de EMG
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são muito semelhantes entre si e não possuem rótulos dos movimentos.
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APÊNDICE A – CÓDIGOS

Os códigos utilizados durante os experimentos se encontram no GitHub

https://github.com/thomasoshima/TCC


